Added knot draft

This commit is contained in:
Mark 2023-05-03 22:23:28 -07:00
parent 8e131d3c31
commit cc04825871
26 changed files with 393 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 144 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 135 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 143 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

343
Advanced/Knots/main.tex Executable file
View File

@ -0,0 +1,343 @@
% use [nosolutions] flag to hide solutions.
% use [solutions] flag to show solutions.
\documentclass[
solutions,
singlenumbering
]{../../resources/ormc_handout}
\usepackage{ifthen}
\usetikzlibrary{
knots,
hobby,
decorations.pathreplacing,
shapes.geometric,
calc
}
\newif{\ifShowKnots}
\ShowKnotsfalse
%\ShowKnotstrue
% Knot debugging.
% Set to true to show knot info
\newif{\ifDebugKnot}
\DebugKnottrue
\DebugKnotfalse
\ifDebugKnot
\tikzset{
knot diagram/draft mode = crossings,
knot diagram/only when rendering/.style = {
show curve endpoints,
%show curve controls
}
}
\fi
% From "Why knot" by
%
% Create largest crossing number with cord
% Human knot number: how many humans do you need to make the knot?
% Human knot number for trefoil composition?
% (looks like a wrap around center string)
%
% Figure-8 knot: mirror without letting go
\tikzset{
knot diagram/every strand/.append style={
line width = 0.8mm,
black
},
show curve controls/.style={
postaction=decorate,
decoration={
show path construction,
curveto code={
\draw[blue, dashed]
(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta)
node [at end, draw, solid, red, inner sep=2pt]{}
;
\draw[blue, dashed]
(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast)
node [at start, draw, solid, red, inner sep=2pt]{}
node [at end, fill, red, ellipse, inner sep=2pt]{}
;
}
}
},
show curve endpoints/.style={
postaction=decorate,
decoration={
show path construction,
curveto code={
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
}
}
}
}
%\usepackage{lua-visual-debug}
\begin{document}
\maketitle
<Advanced 2>
<Spring 2023>
{Knots}
{
Prepared by Mark on \today
}
\section{Introduction}
\definition{}
To form a \textit{knot}, take a string, tie a knot, then join the ends. \par
You can also think of a knot as a path in three-dimensional space that doesn't intersect itself:
\vspace{2mm}
\begin{center}
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
\begin{knot}
\strand
(1,2) .. controls +(-45:1) and +(1,0) ..
(0, 0) .. controls +(-1,0) and +(-90 -45:1) ..
(-1,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that.
\clip (-2,-1.7) rectangle + (4, 4);
\begin{knot}[
consider self intersections=true,
flip crossing = 2,
]
\strand
(1,2) .. controls +(-45:1) and +(120:-2.2) ..
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) ..
(-1,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
\clip (-2,-1.7) rectangle + (4, 4);
\begin{knot}[
consider self intersections=true,
flip crossing = 2,
]
\strand
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
(0,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\end{center}
If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par
If two knots are isomorphic, they are essentially the same knot.
\definition{}
The simplest knot is the \textit{unknot}. It is show below on the left. \par
The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
\begin{center}
\begin{minipage}[t]{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[baseline=(p), scale = 0.8]
\begin{knot}
\strand
(0,2) .. controls +(1.5,0) and +(1.5,0) ..
(0, 0) .. controls +(-1.5,0) and +(-1.5,0) ..
(0,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[baseline=(p), scale = 0.8]
\clip (-2,-1.7) rectangle + (4, 4);
\begin{knot}[
consider self intersections=true,
flip crossing = 2,
]
\strand
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
(0,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\end{center}
\vfill
\pagebreak
\problem{}
Below are the only four distinct knots with only one crossing. \par
Show that no nontrivial knot can have has fewer than three crossings. \par
\hint{There are 4 such knots. What are they?}
\begin{center}
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
\end{center}
\begin{solution}
Draw all four. Each is isomorphic to the unknot.
\end{solution}
\vfill
\problem{}
Show that this is the unknot. \par
A wire or an extension cord may help.
\begin{center}
\includegraphics[width=0.35\linewidth]{images/big unknot.png}
\end{center}
\definition{}
As we said before, there are many ways to draw the same knot. \par
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot.
\vspace{2mm}
\begin{center}
\includegraphics[width=0.8\linewidth]{images/figure eight.png}
\end{center}
\vspace{2mm}
\problem{}
Convince yourself that these are equivalent.
\vfill
\pagebreak
\section{Knot Composition}
Say we have two knots $A$ and $B$.
The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends:
\begin{center}
\hfill
\begin{minipage}[t]{0.15\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/composition a.png}
$A$
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.13\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/composition b.png}
$B$
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\includegraphics[width=\linewidth]{images/composition c.png}
$A \boxplus B$
\end{center}
\end{minipage}
\hfill~
\end{center}
We must be careful to avoid new crossings when composing knots:
\vspace{2mm}
\begin{center}
\includegraphics[width=0.45\linewidth]{images/composition d.png}
\end{center}
\vspace{2mm}
We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par
We say a knot is \textit{prime} otherwise.
\problem{}
For any knot $K$, what is $K \boxplus \text{unknot}$?
\vfill
\problem{}
Use a pencil or a cord to compose the figure-eight knot with itself.
\vfill
\vfill
\pagebreak{}
\problem{}
The following knots are composite. What are their prime components? \par
Try to make them with a cord! \par
\hint{Use the table at the back of this handout to decompose the second knot.}
\begin{center}
\hfill
\includegraphics[height=30mm]{images/decompose a.png}
\hfill
\includegraphics[height=30mm]{images/decompose b.png}
\hfill~\par
\vspace{4mm}
\end{center}
\begin{solution}
The first is easy, it's the trefoil composed with itself. \par
\vspace{2mm}
The second is knot $5_2$ composed with itself. \par
Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par
The figure-eight knot is NOT a part of this composition. Look closely at its crossings.
\end{solution}
\vfill
\pagebreak
\input{parts/table}
\end{document}

View File

@ -0,0 +1,50 @@
\section{Table of Prime Knots}
This table contains the 15 smallest prime knots, ordered by crossing number. \par
Mirror images are not accounted for, even if the mirror image produces a nonisomorphic knot.
\vspace{5mm}
% Images are from the appendix of the Knot book.
\vfill
{
\def\w{25mm}
\foreach \l/\c/\r in {%
{3_1}/{4_1}/{5_1},%
{5_2}/{6_1}/{6_2},%
{6_3}/{7_1}/{7_2},%
{7_3}/{7_4}/{7_5},%
{7_6}/{7_7}/{8_1}%
}{
\hfill
\begin{minipage}{\w}
\begin{center}
\includegraphics[width=\linewidth]{knot table/\l.png} \par
\vspace{2mm}
{\huge $\l$}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{\w}
\begin{center}
\includegraphics[width=\linewidth]{knot table/\c.png} \par
\vspace{2mm}
{\huge $\c$}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{\w}
\begin{center}
\includegraphics[width=\linewidth]{knot table/\r.png} \par
\vspace{2mm}
{\huge $\r$}
\end{center}
\end{minipage}
\hfill~\par
\vspace{4mm}
}
}
\vfill
\pagebreak