159 lines
3.8 KiB
TeX
Raw Normal View History

2023-05-04 10:50:36 -07:00
\section{Introduction}
\definition{}
To form a \textit{knot}, take a string, tie a knot, then join the ends. \par
You can also think of a knot as a path in three-dimensional space that doesn't intersect itself:
\vspace{2mm}
\begin{center}
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
\begin{knot}
\strand
(1,2) .. controls +(-45:1) and +(1,0) ..
(0, 0) .. controls +(-1,0) and +(-90 -45:1) ..
(-1,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that.
\clip (-2,-1.7) rectangle + (4, 4);
\begin{knot}[
consider self intersections=true,
flip crossing = 2,
]
\strand
(1,2) .. controls +(-45:1) and +(120:-2.2) ..
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) ..
(-1,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
\clip (-2,-1.7) rectangle + (4, 4);
\begin{knot}[
consider self intersections=true,
flip crossing = 2,
]
\strand
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
(0,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\end{center}
If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par
If two knots are isomorphic, they are essentially the same knot.
\definition{}
The simplest knot is the \textit{unknot}. It is show below on the left. \par
The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
\begin{center}
\begin{minipage}[t]{0.48\textwidth}
\begin{center}
2023-05-04 11:48:07 -07:00
\begin{tikzpicture}[baseline=(p)]
\draw[circle] (0,0) circle (1);
2023-05-04 10:50:36 -07:00
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[baseline=(p), scale = 0.8]
\clip (-2,-1.7) rectangle + (4, 4);
\begin{knot}[
consider self intersections=true,
flip crossing = 2,
]
\strand
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
(0,2);
\end{knot}
\coordinate (p) at (current bounding box.center);
\end{tikzpicture}
\end{center}
\end{minipage}
\end{center}
\vfill
\pagebreak
\problem{}
2023-05-04 11:48:07 -07:00
Below are the only four knots with one crossing. \par
Show that every nontrivial knot more than two crossings. \par
\hint{There are four knots with two crossings. What are they?}
2023-05-04 10:50:36 -07:00
\begin{center}
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
\end{center}
\begin{solution}
2023-05-04 11:48:07 -07:00
Draw them all. Each is isomorphic to the unknot.
2023-05-04 10:50:36 -07:00
\end{solution}
\vfill
\problem{}
Show that this is the unknot. \par
A wire or an extension cord may help.
\begin{center}
\includegraphics[width=0.35\linewidth]{images/big unknot.png}
\end{center}
\definition{}
As we said before, there are many ways to draw the same knot. \par
2023-05-04 11:48:07 -07:00
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight knot}.
2023-05-04 10:50:36 -07:00
\vspace{2mm}
\begin{center}
\includegraphics[width=0.8\linewidth]{images/figure eight.png}
\end{center}
\vspace{2mm}
\problem{}
2023-05-04 11:48:07 -07:00
Convince yourself that these are equivalent. \par
Try to deform them into each other with a cord!
2023-05-04 10:50:36 -07:00
\vfill
\pagebreak