Finished knot composition
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/noninvertible a.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 238 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/noninvertible b.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 218 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/noninvertible.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 268 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/orientation a.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 125 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/orientation b.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 162 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/images/orientation c.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 146 KiB | 
							
								
								
									
										
											BIN
										
									
								
								Advanced/Knots/knot table/8_17.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 319 KiB | 
| @ -5,37 +5,15 @@ | ||||
| 	singlenumbering | ||||
| ]{../../resources/ormc_handout} | ||||
|  | ||||
| \usepackage{ifthen} | ||||
| \usetikzlibrary{ | ||||
| 	knots, | ||||
| 	hobby, | ||||
| 	decorations.pathreplacing, | ||||
| 	shapes.geometric, | ||||
| 	calc | ||||
| } | ||||
|  | ||||
| \newif{\ifShowKnots} | ||||
| \ShowKnotsfalse | ||||
| %\ShowKnotstrue | ||||
|  | ||||
| % Knot debugging. | ||||
| % Set to true to show knot info | ||||
| % Set to true to show knot measurements. | ||||
| % Only used in tikzset.tex | ||||
| \newif{\ifDebugKnot} | ||||
| \DebugKnottrue | ||||
| %\DebugKnottrue | ||||
| \DebugKnotfalse | ||||
|  | ||||
| \ifDebugKnot | ||||
| 	\tikzset{ | ||||
| 		knot diagram/draft mode = crossings, | ||||
| 		knot diagram/only when rendering/.style = { | ||||
| 			show curve endpoints, | ||||
| 			%show curve controls | ||||
| 		} | ||||
| 	} | ||||
| \fi | ||||
| \input{tikzset.tex} | ||||
|  | ||||
|  | ||||
| % From "Why knot" by | ||||
| % Problems from "Why knot" | ||||
| % | ||||
| % Create largest crossing number with cord | ||||
| % Human knot number: how many humans do you need to make the knot? | ||||
| @ -44,45 +22,10 @@ | ||||
| % | ||||
| % Figure-8 knot: mirror without letting go | ||||
|  | ||||
|  | ||||
| \tikzset{ | ||||
| 	knot diagram/every strand/.append style={ | ||||
| 		line width = 0.8mm, | ||||
| 		black | ||||
| 	}, | ||||
| 	show curve controls/.style={ | ||||
| 		postaction=decorate, | ||||
| 		decoration={ | ||||
| 			show path construction, | ||||
| 			curveto code={ | ||||
| 				\draw[blue, dashed] | ||||
| 					(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta) | ||||
| 					node [at end, draw, solid, red, inner sep=2pt]{} | ||||
| 				; | ||||
|  | ||||
| 				\draw[blue, dashed] | ||||
| 					(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast) | ||||
| 					node [at start, draw, solid, red, inner sep=2pt]{} | ||||
| 					node [at end, fill, red, ellipse, inner sep=2pt]{} | ||||
| 				; | ||||
| 			} | ||||
| 		} | ||||
| 	}, | ||||
| 	show curve endpoints/.style={ | ||||
| 		postaction=decorate, | ||||
| 		decoration={ | ||||
| 			show path construction, | ||||
| 			curveto code={ | ||||
| 				\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {}; | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
|  | ||||
| %\usepackage{lua-visual-debug} | ||||
|  | ||||
| \begin{document} | ||||
|  | ||||
| \begin{document} | ||||
| 	\maketitle | ||||
| 		<Advanced 2> | ||||
| 		<Spring 2023> | ||||
| @ -91,251 +34,9 @@ | ||||
| 			Prepared by Mark on \today | ||||
| 		} | ||||
|  | ||||
| 	\section{Introduction} | ||||
|  | ||||
| 	\definition{} | ||||
| 	To form a \textit{knot}, take a string, tie a knot, then join the ends. \par | ||||
| 	You can also think of a knot as a path in three-dimensional space that doesn't intersect itself: | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\begin{minipage}[t]{0.3\textwidth} | ||||
| 		\begin{center} | ||||
| 			\begin{tikzpicture}[scale = 0.8, baseline=(p)] | ||||
| 			\begin{knot} | ||||
| 				\strand | ||||
| 					(1,2) .. controls +(-45:1) and +(1,0) .. | ||||
| 					(0, 0) .. controls +(-1,0) and +(-90 -45:1) .. | ||||
| 					(-1,2); | ||||
| 			\end{knot} | ||||
|  | ||||
| 			\coordinate (p) at (current bounding box.center); | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| 		\hfill | ||||
| 		\begin{minipage}[t]{0.3\textwidth} | ||||
| 		\begin{center} | ||||
| 			\begin{tikzpicture}[scale = 0.8, baseline=(p)] | ||||
|  | ||||
| 			% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that. | ||||
| 			\clip (-2,-1.7) rectangle + (4, 4); | ||||
|  | ||||
| 			\begin{knot}[ | ||||
| 				consider self intersections=true, | ||||
| 				flip crossing = 2, | ||||
| 			] | ||||
| 				\strand | ||||
| 					(1,2) .. controls +(-45:1) and +(120:-2.2) .. | ||||
| 					(210:2) .. controls +(120:2.2) and +(60:2.2) .. | ||||
| 					(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) .. | ||||
| 					(-1,2); | ||||
| 			\end{knot} | ||||
|  | ||||
| 			\coordinate (p) at (current bounding box.center); | ||||
|  | ||||
|  | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| 		\hfill | ||||
| 		\begin{minipage}[t]{0.3\textwidth} | ||||
| 			\begin{center} | ||||
| 				\begin{tikzpicture}[scale = 0.8, baseline=(p)] | ||||
|  | ||||
| 				\clip (-2,-1.7) rectangle + (4, 4); | ||||
|  | ||||
|  | ||||
| 				\begin{knot}[ | ||||
| 					consider self intersections=true, | ||||
| 					flip crossing = 2, | ||||
| 				] | ||||
| 					\strand | ||||
| 						(0,2) .. controls +(2.2,0) and +(120:-2.2) .. | ||||
| 						(210:2) .. controls +(120:2.2) and +(60:2.2) .. | ||||
| 						(-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. | ||||
| 						(0,2); | ||||
| 				\end{knot} | ||||
|  | ||||
| 				\coordinate (p) at (current bounding box.center); | ||||
|  | ||||
| 				\end{tikzpicture} | ||||
| 			\end{center} | ||||
| 			\end{minipage} | ||||
| 	\end{center} | ||||
|  | ||||
| 	If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par | ||||
| 	If two knots are isomorphic, they are essentially the same knot. | ||||
|  | ||||
| 	\definition{} | ||||
| 	The simplest knot is the \textit{unknot}. It is show below on the left. \par | ||||
| 	The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right. | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\begin{minipage}[t]{0.48\textwidth} | ||||
| 		\begin{center} | ||||
| 			\begin{tikzpicture}[baseline=(p), scale = 0.8] | ||||
| 			\begin{knot} | ||||
| 				\strand | ||||
| 					(0,2) .. controls +(1.5,0) and +(1.5,0) .. | ||||
| 					(0, 0) .. controls +(-1.5,0) and +(-1.5,0) .. | ||||
| 					(0,2); | ||||
| 			\end{knot} | ||||
|  | ||||
| 			\coordinate (p) at (current bounding box.center); | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| 		\hfill | ||||
| 		\begin{minipage}[t]{0.48\textwidth} | ||||
| 		\begin{center} | ||||
| 		\begin{tikzpicture}[baseline=(p), scale = 0.8] | ||||
|  | ||||
| 			\clip (-2,-1.7) rectangle + (4, 4); | ||||
|  | ||||
| 			\begin{knot}[ | ||||
| 				consider self intersections=true, | ||||
| 				flip crossing = 2, | ||||
| 			] | ||||
| 				\strand | ||||
| 					(0,2) .. controls +(2.2,0) and +(120:-2.2) .. | ||||
| 					(210:2) .. controls +(120:2.2) and +(60:2.2) .. | ||||
| 					(-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. | ||||
| 					(0,2); | ||||
| 			\end{knot} | ||||
| 			\coordinate (p) at (current bounding box.center); | ||||
|  | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| 	\end{center} | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
| 	\problem{} | ||||
| 	Below are the only four distinct knots with only one crossing. \par | ||||
| 	Show that no nontrivial knot can have has fewer than three crossings. \par | ||||
| 	\hint{There are 4 such knots. What are they?} | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=0.8\linewidth]{images/one crossing.png} | ||||
| 	\end{center} | ||||
|  | ||||
| 	\begin{solution} | ||||
| 		Draw all four. Each is isomorphic to the unknot. | ||||
| 	\end{solution} | ||||
|  | ||||
| 	\vfill | ||||
|  | ||||
| 	\problem{} | ||||
| 	Show that this is the unknot. \par | ||||
| 	A wire or an extension cord may help. | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=0.35\linewidth]{images/big unknot.png} | ||||
| 	\end{center} | ||||
|  | ||||
|  | ||||
| 	\definition{} | ||||
| 	As we said before, there are many ways to draw the same knot. \par | ||||
| 	We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot. | ||||
|  | ||||
|  | ||||
| 	\vspace{2mm} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=0.8\linewidth]{images/figure eight.png} | ||||
| 	\end{center} | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	\problem{} | ||||
| 	Convince yourself that these are equivalent. | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
|  | ||||
|  | ||||
| 	\section{Knot Composition} | ||||
|  | ||||
| 	Say we have two knots $A$ and $B$. | ||||
| 	The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends: | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\hfill | ||||
| 		\begin{minipage}[t]{0.15\textwidth} | ||||
| 		\begin{center} | ||||
| 			\includegraphics[width=\linewidth]{images/composition a.png} | ||||
| 			$A$ | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| 		\hfill | ||||
| 		\begin{minipage}[t]{0.13\textwidth} | ||||
| 		\begin{center} | ||||
| 			\includegraphics[width=\linewidth]{images/composition b.png} | ||||
| 			$B$ | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| 		\hfill | ||||
| 		\begin{minipage}[t]{0.3\textwidth} | ||||
| 		\begin{center} | ||||
| 			\includegraphics[width=\linewidth]{images/composition c.png} | ||||
| 			$A \boxplus B$ | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| 		\hfill~ | ||||
| 	\end{center} | ||||
|  | ||||
| 	We must be careful to avoid new crossings when composing knots: | ||||
|  | ||||
| 	\vspace{2mm} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=0.45\linewidth]{images/composition d.png} | ||||
| 	\end{center} | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par | ||||
| 	We say a knot is \textit{prime} otherwise. | ||||
|  | ||||
| 	\problem{} | ||||
| 	For any knot $K$, what is $K \boxplus \text{unknot}$? | ||||
|  | ||||
| 	\vfill | ||||
|  | ||||
| 	\problem{} | ||||
| 	Use a pencil or a cord to compose the figure-eight knot with itself. | ||||
|  | ||||
| 	\vfill | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak{} | ||||
|  | ||||
| 	\problem{} | ||||
| 	The following knots are composite. What are their prime components? \par | ||||
| 	Try to make them with a cord! \par | ||||
| 	\hint{Use the table at the back of this handout to decompose the second knot.} | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\hfill | ||||
| 		\includegraphics[height=30mm]{images/decompose a.png} | ||||
| 		\hfill | ||||
| 		\includegraphics[height=30mm]{images/decompose b.png} | ||||
| 		\hfill~\par | ||||
| 		\vspace{4mm} | ||||
| 	\end{center} | ||||
|  | ||||
| 	\begin{solution} | ||||
| 		The first is easy, it's the trefoil composed with itself. \par | ||||
|  | ||||
| 		\vspace{2mm} | ||||
|  | ||||
| 		The second is knot $5_2$ composed with itself. \par | ||||
| 		Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par | ||||
| 		The figure-eight knot is NOT a part of this composition. Look closely at its crossings. | ||||
| 	\end{solution} | ||||
|  | ||||
| 	\vfill | ||||
| 	\pagebreak | ||||
| 	\input{parts/0 intro.tex} | ||||
| 	\input{parts/1 composition.tex} | ||||
|  | ||||
| 	\input{parts/table} | ||||
|  | ||||
|  | ||||
							
								
								
									
										163
									
								
								Advanced/Knots/parts/0 intro.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						| @ -0,0 +1,163 @@ | ||||
| \section{Introduction} | ||||
|  | ||||
| \definition{} | ||||
| To form a \textit{knot}, take a string, tie a knot, then join the ends. \par | ||||
| You can also think of a knot as a path in three-dimensional space that doesn't intersect itself: | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{minipage}[t]{0.3\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale = 0.8, baseline=(p)] | ||||
| 		\begin{knot} | ||||
| 			\strand | ||||
| 				(1,2) .. controls +(-45:1) and +(1,0) .. | ||||
| 				(0, 0) .. controls +(-1,0) and +(-90 -45:1) .. | ||||
| 				(-1,2); | ||||
| 		\end{knot} | ||||
|  | ||||
| 		\coordinate (p) at (current bounding box.center); | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.3\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale = 0.8, baseline=(p)] | ||||
|  | ||||
| 		% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that. | ||||
| 		\clip (-2,-1.7) rectangle + (4, 4); | ||||
|  | ||||
| 		\begin{knot}[ | ||||
| 			consider self intersections=true, | ||||
| 			flip crossing = 2, | ||||
| 		] | ||||
| 			\strand | ||||
| 				(1,2) .. controls +(-45:1) and +(120:-2.2) .. | ||||
| 				(210:2) .. controls +(120:2.2) and +(60:2.2) .. | ||||
| 				(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) .. | ||||
| 				(-1,2); | ||||
| 		\end{knot} | ||||
|  | ||||
| 		\coordinate (p) at (current bounding box.center); | ||||
|  | ||||
|  | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.3\textwidth} | ||||
| 		\begin{center} | ||||
| 			\begin{tikzpicture}[scale = 0.8, baseline=(p)] | ||||
|  | ||||
| 			\clip (-2,-1.7) rectangle + (4, 4); | ||||
|  | ||||
|  | ||||
| 			\begin{knot}[ | ||||
| 				consider self intersections=true, | ||||
| 				flip crossing = 2, | ||||
| 			] | ||||
| 				\strand | ||||
| 					(0,2) .. controls +(2.2,0) and +(120:-2.2) .. | ||||
| 					(210:2) .. controls +(120:2.2) and +(60:2.2) .. | ||||
| 					(-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. | ||||
| 					(0,2); | ||||
| 			\end{knot} | ||||
|  | ||||
| 			\coordinate (p) at (current bounding box.center); | ||||
|  | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 		\end{minipage} | ||||
| \end{center} | ||||
|  | ||||
| If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par | ||||
| If two knots are isomorphic, they are essentially the same knot. | ||||
|  | ||||
| \definition{} | ||||
| The simplest knot is the \textit{unknot}. It is show below on the left. \par | ||||
| The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right. | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{minipage}[t]{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[baseline=(p), scale = 0.8] | ||||
| 		\begin{knot} | ||||
| 			\strand | ||||
| 				(0,2) .. controls +(1.5,0) and +(1.5,0) .. | ||||
| 				(0, 0) .. controls +(-1.5,0) and +(-1.5,0) .. | ||||
| 				(0,2); | ||||
| 		\end{knot} | ||||
|  | ||||
| 		\coordinate (p) at (current bounding box.center); | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 	\begin{tikzpicture}[baseline=(p), scale = 0.8] | ||||
|  | ||||
| 		\clip (-2,-1.7) rectangle + (4, 4); | ||||
|  | ||||
| 		\begin{knot}[ | ||||
| 			consider self intersections=true, | ||||
| 			flip crossing = 2, | ||||
| 		] | ||||
| 			\strand | ||||
| 				(0,2) .. controls +(2.2,0) and +(120:-2.2) .. | ||||
| 				(210:2) .. controls +(120:2.2) and +(60:2.2) .. | ||||
| 				(-30:2) .. controls +(60:-2.2) and +(-2.2,0) .. | ||||
| 				(0,2); | ||||
| 		\end{knot} | ||||
| 		\coordinate (p) at (current bounding box.center); | ||||
|  | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| \end{center} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Below are the only four distinct knots with only one crossing. \par | ||||
| Show that no nontrivial knot can have has fewer than three crossings. \par | ||||
| \hint{There are 4 such knots. What are they?} | ||||
|  | ||||
| \begin{center} | ||||
| 	\includegraphics[width=0.8\linewidth]{images/one crossing.png} | ||||
| \end{center} | ||||
|  | ||||
| \begin{solution} | ||||
| 	Draw all four. Each is isomorphic to the unknot. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Show that this is the unknot. \par | ||||
| A wire or an extension cord may help. | ||||
|  | ||||
| \begin{center} | ||||
| 	\includegraphics[width=0.35\linewidth]{images/big unknot.png} | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| As we said before, there are many ways to draw the same knot. \par | ||||
| We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot. | ||||
|  | ||||
|  | ||||
| \vspace{2mm} | ||||
| \begin{center} | ||||
| 	\includegraphics[width=0.8\linewidth]{images/figure eight.png} | ||||
| \end{center} | ||||
| \vspace{2mm} | ||||
|  | ||||
| \problem{} | ||||
| Convince yourself that these are equivalent. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										133
									
								
								Advanced/Knots/parts/1 composition.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						| @ -0,0 +1,133 @@ | ||||
| \section{Knot Composition} | ||||
|  | ||||
| Say we have two knots $A$ and $B$. | ||||
| The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends: | ||||
|  | ||||
| \begin{center} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.15\textwidth} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=\linewidth]{images/composition a.png} | ||||
| 		$A$ | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.13\textwidth} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=\linewidth]{images/composition b.png} | ||||
| 		$B$ | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.3\textwidth} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=\linewidth]{images/composition c.png} | ||||
| 		$A \boxplus B$ | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill~ | ||||
| \end{center} | ||||
|  | ||||
| We must be careful to avoid new crossings when composing knots: | ||||
|  | ||||
| \vspace{2mm} | ||||
| \begin{center} | ||||
| 	\includegraphics[width=0.45\linewidth]{images/composition d.png} | ||||
| \end{center} | ||||
| \vspace{2mm} | ||||
|  | ||||
| We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par | ||||
| We say a knot is \textit{prime} otherwise. | ||||
|  | ||||
| \problem{} | ||||
| For any knot $K$, what is $K \boxplus \text{unknot}$? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Use a pencil or a cord to compose the figure-eight knot with itself. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \vfill | ||||
| \pagebreak{} | ||||
|  | ||||
| \problem{} | ||||
| The following knots are composite. What are their prime components? \par | ||||
| Try to make them with a cord! \par | ||||
| \hint{Use the table at the back of this handout to decompose the second knot.} | ||||
|  | ||||
| \begin{center} | ||||
| 	\hfill | ||||
| 	\includegraphics[height=30mm]{images/decompose a.png} | ||||
| 	\hfill | ||||
| 	\includegraphics[height=30mm]{images/decompose b.png} | ||||
| 	\hfill~\par | ||||
| 	\vspace{4mm} | ||||
| \end{center} | ||||
|  | ||||
| \begin{solution} | ||||
| 	The first is easy, it's the trefoil composed with itself. \par | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	The second is knot $5_2$ composed with itself. \par | ||||
| 	Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par | ||||
| 	The figure-eight knot is NOT a part of this composition. Look closely at its crossings. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \definition{} | ||||
| When we compose two knots, we may get different results. To fully understand this fact, we need to define knot \textit{orientation}. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| An \textit{orientated knot} is created by defining a \say{direction of travel.} \par | ||||
| There are two distinct ways to compose a pair of oriented knots: | ||||
|  | ||||
| \begin{center} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.25\textwidth} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=\linewidth]{images/orientation b.png} | ||||
| 		Matching orientation | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}[t]{0.25\textwidth} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=\linewidth]{images/orientation c.png} | ||||
| 		Inverse orientation | ||||
| 	\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill~ | ||||
| \end{center} | ||||
|  | ||||
| In this example, both compositions happen to give the same result. This is because the trefoil knot is \textit{invertible}: its direction can be reversed by deforming it. This is not true in general, as you will soon see. | ||||
|  | ||||
| \problem{} | ||||
| Invert a directed trefoil. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| The smallest non-invertible knot is $8_{17}$, shown below. \par | ||||
| Compose $8_{17}$ with itself to obtain two different knots. | ||||
|  | ||||
| \begin{center} | ||||
| 	\includegraphics[height=30mm]{knot table/8_17.png} \par | ||||
| 	\vspace{2mm} | ||||
| 	{\large Knot $8_{17}$} | ||||
| \end{center} | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{center} | ||||
| 		\includegraphics[width=0.8\linewidth]{images/noninvertible.png} | ||||
| 	\end{center} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										51
									
								
								Advanced/Knots/tikzset.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						| @ -0,0 +1,51 @@ | ||||
| \usetikzlibrary{ | ||||
| 	knots, | ||||
| 	hobby, | ||||
| 	decorations.pathreplacing, | ||||
| 	shapes.geometric, | ||||
| 	calc | ||||
| } | ||||
|  | ||||
| \ifDebugKnot | ||||
| 	\tikzset{ | ||||
| 		knot diagram/draft mode = crossings, | ||||
| 		knot diagram/only when rendering/.style = { | ||||
| 			show curve endpoints, | ||||
| 			%show curve controls | ||||
| 		} | ||||
| 	} | ||||
| \fi | ||||
|  | ||||
| \tikzset{ | ||||
| 	knot diagram/every strand/.append style={ | ||||
| 		line width = 0.8mm, | ||||
| 		black | ||||
| 	}, | ||||
| 	show curve controls/.style={ | ||||
| 		postaction=decorate, | ||||
| 		decoration={ | ||||
| 			show path construction, | ||||
| 			curveto code={ | ||||
| 				\draw[blue, dashed] | ||||
| 					(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta) | ||||
| 					node [at end, draw, solid, red, inner sep=2pt]{} | ||||
| 				; | ||||
|  | ||||
| 				\draw[blue, dashed] | ||||
| 					(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast) | ||||
| 					node [at start, draw, solid, red, inner sep=2pt]{} | ||||
| 					node [at end, fill, red, ellipse, inner sep=2pt]{} | ||||
| 				; | ||||
| 			} | ||||
| 		} | ||||
| 	}, | ||||
| 	show curve endpoints/.style={ | ||||
| 		postaction=decorate, | ||||
| 		decoration={ | ||||
| 			show path construction, | ||||
| 			curveto code={ | ||||
| 				\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {}; | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| } | ||||