minimax/src/agents/util/partials.rs
2024-03-06 09:55:47 -08:00

150 lines
3.9 KiB
Rust

use itertools::Itertools;
use std::{mem::swap, num::NonZeroU8};
use crate::{board::Board, util::Symb};
/// Returns an iterator of (idx, coords, char_idx, f32) for each empty slot in the listed partials.
/// - idx is the index of this slot in the board string.
/// - coords are the coordinate of this slot's partial
/// - char_idx is the index of this slot in its partial
/// - f32 is the influence of this slot
pub fn free_slots_by_influence(board: &Board) -> Option<Vec<(usize, f32)>> {
// Fill all empty slots with fives and compute starting value
let filled = {
// This should always result in an evaluatable expression,
// since parenthesis do not exist.
// (the only way to divide by zero is by doing something like /(5-2+3) )
let f = Board::from_board(board.get_board().map(|x| match x {
None => Symb::from_char('5'),
_ => x,
}));
f
};
let base = filled.evaluate()?;
// Test each slot:
// Increase its value by 1, and record its effect on the
// expression's total value.
// This isn't a perfect metric, but it's pretty good.
let mut slots: Vec<(usize, f32)> = board
.get_board()
.iter()
.enumerate()
.filter_map(|(i, s)| if s.is_some() { None } else { Some(i) })
.map(|i| {
let mut new_tree = filled.clone();
new_tree.get_board_mut()[i] = Some(Symb::from_char('6').unwrap());
// This shouldn't ever be None
(i, new_tree.evaluate().unwrap() - base)
})
.collect();
// Sort by most to least influence
slots.sort_by(|a, b| {
b.1.abs()
.partial_cmp(&a.1.abs())
.unwrap_or(std::cmp::Ordering::Equal)
});
Some(slots)
}
/// Find the minimum or maximum possible value of the given board,
/// without adding any operations. Returns None if we couldn't find
/// a best board.
pub fn best_board_noop(board: &Board, minimize: bool) -> Option<Board> {
let n_free = board.get_board().iter().filter(|x| x.is_none()).count();
// TODO: fix zero division
let available_numbers = (1..=9)
.map(|x| match x {
0 => Symb::Zero,
x => Symb::Number(NonZeroU8::new(x).unwrap()),
})
.filter(|x| !board.contains(*x))
.collect::<Vec<_>>();
if n_free > available_numbers.len() {
return None;
}
let slots = free_slots_by_influence(board)?;
let all_symbols = {
let mut a = {
// Number of slots we want to minimize
let mut neg_count = slots.iter().filter(|(_, x)| *x <= 0.0).count();
// Number of slots we want to maximize
let mut pos_count = slots.iter().filter(|(_, x)| *x > 0.0).count();
if minimize {
swap(&mut neg_count, &mut pos_count);
}
available_numbers
.iter()
.take(neg_count)
.chain(available_numbers.iter().rev().take(pos_count).rev())
.collect_vec()
};
if !minimize {
a.reverse();
}
let mut a_iter = a.into_iter();
slots
// Group slots with equal weights
// and count the number of elements in each group
.iter()
.group_by(|x| x.1)
.into_iter()
.map(|(_, x)| x.count())
// Generate the digits we should try for each group of
// equal-weight slots
.map(|s| {
(0..s)
.map(|_| *a_iter.next().unwrap())
.permutations(s)
.unique()
.collect_vec()
})
// Now, covert this to an array of all cartesian products
// of this set of sets
.multi_cartesian_product()
.map(|x| x.iter().flatten().cloned().collect_vec())
// Finally, attach the coordinate of each slot to each symbol
.map(|v| slots.iter().map(|x| x.0).zip(v).collect_vec())
.collect_vec()
};
let mut best_board = None;
let mut best_value = None;
for i_iter in all_symbols {
let mut tmp_board = board.clone();
for (i, s) in i_iter {
tmp_board.get_board_mut()[i] = Some(s);
}
let val = tmp_board.evaluate();
if let Some(val) = val {
if minimize {
if best_value.is_none() || val < best_value.unwrap() {
best_value = Some(val);
best_board = Some(tmp_board)
}
} else {
if best_value.is_none() || val > best_value.unwrap() {
best_value = Some(val);
best_board = Some(tmp_board)
}
}
}
}
best_board
}