use itertools::Itertools; use std::{mem::swap, num::NonZeroU8}; use crate::{board::Board, util::Symb}; /// Returns an iterator of (idx, coords, char_idx, f32) for each empty slot in the listed partials. /// - idx is the index of this slot in the board string. /// - coords are the coordinate of this slot's partial /// - char_idx is the index of this slot in its partial /// - f32 is the influence of this slot pub fn free_slots_by_influence(board: &Board) -> Option> { // Fill all empty slots with fives and compute starting value let filled = { // This should always result in an evaluatable expression, // since parenthesis do not exist. // (the only way to divide by zero is by doing something like /(5-2+3) ) let f = Board::from_board(board.get_board().map(|x| match x { None => Symb::from_char('5'), _ => x, })); f }; let base = filled.evaluate()?; // Test each slot: // Increase its value by 1, and record its effect on the // expression's total value. // This isn't a perfect metric, but it's pretty good. let mut slots: Vec<(usize, f32)> = board .get_board() .iter() .enumerate() .filter_map(|(i, s)| if s.is_some() { None } else { Some(i) }) .map(|i| { let mut new_tree = filled.clone(); new_tree.get_board_mut()[i] = Some(Symb::from_char('6').unwrap()); // This shouldn't ever be None (i, new_tree.evaluate().unwrap() - base) }) .collect(); // Sort by most to least influence slots.sort_by(|a, b| { b.1.abs() .partial_cmp(&a.1.abs()) .unwrap_or(std::cmp::Ordering::Equal) }); Some(slots) } /// Find the minimum or maximum possible value of the given board, /// without adding any operations. Returns None if we couldn't find /// a best board. pub fn best_board_noop(board: &Board, minimize: bool) -> Option { let n_free = board.get_board().iter().filter(|x| x.is_none()).count(); // TODO: fix zero division let available_numbers = (1..=9) .map(|x| match x { 0 => Symb::Zero, x => Symb::Number(NonZeroU8::new(x).unwrap()), }) .filter(|x| !board.contains(*x)) .collect::>(); if n_free > available_numbers.len() { return None; } let slots = free_slots_by_influence(board)?; let all_symbols = { let mut a = { // Number of slots we want to minimize let mut neg_count = slots.iter().filter(|(_, x)| *x <= 0.0).count(); // Number of slots we want to maximize let mut pos_count = slots.iter().filter(|(_, x)| *x > 0.0).count(); if minimize { swap(&mut neg_count, &mut pos_count); } available_numbers .iter() .take(neg_count) .chain(available_numbers.iter().rev().take(pos_count).rev()) .collect_vec() }; if !minimize { a.reverse(); } let mut a_iter = a.into_iter(); slots // Group slots with equal weights // and count the number of elements in each group .iter() .group_by(|x| x.1) .into_iter() .map(|(_, x)| x.count()) // Generate the digits we should try for each group of // equal-weight slots .map(|s| { (0..s) .map(|_| *a_iter.next().unwrap()) .permutations(s) .unique() .collect_vec() }) // Now, covert this to an array of all cartesian products // of this set of sets .multi_cartesian_product() .map(|x| x.iter().flatten().cloned().collect_vec()) // Finally, attach the coordinate of each slot to each symbol .map(|v| slots.iter().map(|x| x.0).zip(v).collect_vec()) .collect_vec() }; let mut best_board = None; let mut best_value = None; for i_iter in all_symbols { let mut tmp_board = board.clone(); for (i, s) in i_iter { tmp_board.get_board_mut()[i] = Some(s); } let val = tmp_board.evaluate(); if let Some(val) = val { if minimize { if best_value.is_none() || val < best_value.unwrap() { best_value = Some(val); best_board = Some(tmp_board) } } else { if best_value.is_none() || val > best_value.unwrap() { best_value = Some(val); best_board = Some(tmp_board) } } } } best_board }