Reworked minimax agent

master
Mark 2024-03-05 10:17:56 -08:00
parent 14c524c599
commit 65e8eb7998
Signed by: Mark
GPG Key ID: C6D63995FE72FD80
7 changed files with 262 additions and 494 deletions

68
src/agents/minimax.rs Normal file
View File

@ -0,0 +1,68 @@
use anyhow::Result;
use std::num::NonZeroU8;
use super::{MaximizerAgent, MinimizerAgent, RandomAgent};
use crate::{
agents::util::free_slots_by_influence,
board::{Board, PlayerAction},
util::Symb,
};
pub struct SimpleMinimax {}
impl SimpleMinimax {
fn step(&mut self, board: &Board, minimize: bool) -> Result<PlayerAction> {
let available_numbers = (0..=9)
.map(|x| match x {
0 => Symb::Zero,
x => Symb::Number(NonZeroU8::new(x).unwrap()),
})
.filter(|x| !board.contains(*x))
.collect::<Vec<_>>();
// For the code below, we must guarantee that
// min_slots + max_slots <= available_numbers.len
let n_free = board.get_board().iter().filter(|x| x.is_none()).count();
if available_numbers.len() < n_free || n_free >= 10 {
return RandomAgent {}.step_min(board);
}
let t = free_slots_by_influence(&board);
if t.len() == 0 {
return RandomAgent {}.step_min(board);
}
let (pos, val) = t[0];
let symb = {
if minimize {
if val >= 0.0 {
available_numbers[0]
} else {
available_numbers[available_numbers.len() - 1]
}
} else {
if val <= 0.0 {
available_numbers[0]
} else {
available_numbers[available_numbers.len() - 1]
}
}
};
Ok(PlayerAction { symb, pos })
}
}
impl MinimizerAgent for SimpleMinimax {
fn step_min(&mut self, board: &Board) -> Result<PlayerAction> {
self.step(board, true)
}
}
impl MaximizerAgent for SimpleMinimax {
fn step_max(&mut self, board: &Board) -> Result<PlayerAction> {
self.step(board, false)
}
}

View File

@ -1,216 +0,0 @@
use std::{iter, num::NonZeroU8};
use anyhow::Result;
use itertools::Itertools;
use super::{
util::{fill_partials, TreeCoords},
MaximizerAgent, MinimizerAgent, RandomAgent,
};
use crate::{
agents::util::{find_partials, free_chars},
board::{Board, PlayerAction, TreeElement},
util::Symb,
};
pub struct MinMaxTree {}
fn find_best_numbers_v1<'a, F>(
tree: &TreeElement,
partials: &[TreeCoords],
numbers: impl Iterator<Item = &'a Symb>,
minimize: bool,
// Returns true if we want to maximize the given partial,
// and false if we want to fix it.
filter: F,
) -> Vec<Symb>
where
F: Fn(&&TreeCoords) -> bool,
{
// Fill maximizer slots with arbitrary numbers
let min_tree_base = fill_partials(
tree,
partials.iter().filter(|x| !filter(x)),
iter::repeat(&Symb::Number(NonZeroU8::new(5).unwrap())),
);
let partials_to_optimize: Vec<TreeCoords> = partials.iter().filter(filter).cloned().collect();
let n_empty = free_chars(tree, partials_to_optimize.iter()).len();
println!("{:?}", n_empty);
let trees: Vec<(f32, Vec<&Symb>)> = numbers
.permutations(n_empty)
.unique()
.filter_map(move |l| {
let mut i = l.iter();
let mut tmp_tree = min_tree_base.clone();
for p in &partials_to_optimize {
let x = p.get_from_mut(&mut tmp_tree).unwrap();
let x_str = match x {
TreeElement::Partial(s) => s,
_ => unreachable!(),
};
let mut new_str = String::new();
for c in x_str.chars() {
if c == '_' {
new_str.push_str(&format!("{}", i.next().unwrap()))
} else {
new_str.push(c);
}
}
*x = TreeElement::Number(new_str.parse().unwrap())
}
println!("{:?}", tmp_tree);
tmp_tree.evaluate().map(|x| (x, l))
})
.collect();
let mut best_list: Option<Vec<&Symb>> = None;
let mut best_value: Option<f32> = None;
for (x, list) in trees {
if let Some(m) = best_value {
if (minimize && x < m) || (!minimize && x > m) {
best_value = Some(x);
best_list = Some(list);
}
} else {
best_value = Some(x);
best_list = Some(list);
}
}
best_list.unwrap().into_iter().cloned().collect()
}
fn find_best_numbers(
tree: &TreeElement,
partials: &[TreeCoords],
// The numbers we're allowed to add, sorted in ascending order
available_numbers: &[Symb],
) -> TreeElement {
// Fill all empty slots with fives
let tree_filled = fill_partials(
tree,
partials.iter(),
iter::repeat(&Symb::Number(NonZeroU8::new(5).unwrap())),
);
let base = tree_filled.evaluate().unwrap();
// Test each slot:
// Increase its value by 1, and record its effect on the
// expression's total value.
// This isn't a perfect metric, but it's pretty good.
let mut slots: Vec<(usize, &TreeCoords, usize, f32)> = free_chars(tree, partials.iter())
.into_iter()
.enumerate()
.map(|(i_slot, (c, i))| {
let mut new_tree = tree_filled.clone();
let p = c.get_from_mut(&mut new_tree).unwrap();
match p {
TreeElement::Partial(s) => s.replace_range(i..i + 1, "6"),
_ => unreachable!(),
}
// This shouldn't ever be None.
(i_slot, c, i, new_tree.evaluate().unwrap() - base)
})
.collect();
// Sort by least to most influence
slots.sort_by(|a, b| a.3.partial_cmp(&b.3).unwrap());
let all_symbols = {
// We need this many from the bottom, and this many from the top.
let neg_count = slots.iter().filter(|(_, _, _, x)| *x <= 0.0).count();
let pos_count = slots.iter().filter(|(_, _, _, x)| *x > 0.0).count();
let mut a_iter = available_numbers
.iter()
.take(neg_count)
.chain(available_numbers.iter().rev().take(pos_count).rev());
let mut g = slots
// Group slots with equal weights
// and count the number of elements in each group
.iter()
.group_by(|x| x.3)
.into_iter()
.map(|(_, x)| x.count())
// Generate the digits we should try for each group of
// equal-weight slots
.map(|s| {
(0..s)
.map(|_| a_iter.next().unwrap().clone())
.permutations(s)
.unique()
.collect_vec()
})
// Now, covert this to an array of all cartesian products
// of this set of sets
.multi_cartesian_product()
.map(|x| x.iter().flatten().cloned().collect_vec())
.map(|v| slots.iter().zip(v).collect_vec())
.collect_vec();
// Sort these vectors so the order of values
// matches the order of empty slots
g.iter_mut()
.for_each(|v| v.sort_by(|(a, _), (b, _)| a.0.partial_cmp(&b.0).unwrap()));
g.into_iter()
.map(|v| v.into_iter().map(|(_, s)| s).collect_vec())
};
let mut best_tree = None;
let mut best_value = None;
for i in all_symbols {
let tmp_tree = fill_partials(&tree, partials.iter(), i.iter());
let val = tmp_tree.evaluate();
if let Some(val) = val {
if let Some(best) = best_value {
if val > best {
best_value = Some(val);
best_tree = Some(tmp_tree)
}
} else {
best_value = Some(val);
best_tree = Some(tmp_tree)
}
}
}
best_tree.unwrap()
}
impl MinMaxTree {}
impl MinimizerAgent for MinMaxTree {
fn step_min(&mut self, board: &Board) -> Result<PlayerAction> {
let tree = board.to_tree();
let partials = find_partials(&tree);
let available_numbers = (0..=9)
.map(|x| match x {
0 => Symb::Zero,
x => Symb::Number(NonZeroU8::new(x).unwrap()),
})
.filter(|x| !board.contains(*x))
.collect::<Vec<_>>();
// For the code below, we must guarantee that
// that is, min_slots + max_slots <= available_numbers.len
if available_numbers.len() < free_chars(&tree, partials.iter()).len() {
return RandomAgent {}.step_max(board);
}
let t = find_best_numbers(&tree, &partials, &available_numbers);
println!("{:?}", t);
RandomAgent {}.step_max(board)
}
}

View File

@ -1,11 +1,11 @@
mod diffuse;
mod minmaxtree;
mod minimax;
mod player;
mod random;
pub mod util;
pub use diffuse::DiffuseAgent;
pub use minmaxtree::MinMaxTree;
pub use diffuse::Diffuse;
pub use minimax::SimpleMinimax;
pub use player::PlayerAgent;
pub use random::RandomAgent;

View File

@ -1,6 +1,3 @@
/// Common helper functions that may be used by agents.
mod partials;
mod treecoords;
pub use partials::*;
pub use treecoords::*;

View File

@ -1,96 +1,129 @@
use super::{TreeCoords, TreeDir};
use crate::{board::TreeElement, util::Symb};
use itertools::Itertools;
use std::num::NonZeroU8;
/// Find the coordinates of all partials in the given tree
pub fn find_partials(tree: &TreeElement) -> Vec<TreeCoords> {
let mut partials = Vec::new();
let mut current_coords = TreeCoords::new();
use crate::{board::Board, util::Symb};
loop {
let t = current_coords.get_from(tree).unwrap();
match t {
TreeElement::Number(_) | TreeElement::Partial(_) => {
if let TreeElement::Partial(_) = t {
partials.push(current_coords);
}
/// Returns an iterator of (sort, coords, char_idx, f32) for each empty slot in the listed partials.
/// - sort is the index of this slot.
/// - coords are the coordinate of this slot's partial
/// - char_idx is the index of this slot in its partial
/// - f32 is the influence of this slot
pub fn free_slots_by_influence(board: &Board) -> Vec<(usize, f32)> {
// Fill all empty slots with fives and compute starting value
let filled = Board::from_board(board.get_board().map(|x| match x {
None => Symb::from_char('5'),
_ => x,
}));
loop {
match current_coords.pop() {
Some((TreeDir::Left, _)) => {
current_coords.push(
TreeDir::Right,
match current_coords.get_from(tree) {
Some(TreeElement::Add { .. }) => current_coords.is_inverted(),
Some(TreeElement::Mul { .. }) => current_coords.is_inverted(),
Some(TreeElement::Sub { .. }) => !current_coords.is_inverted(),
Some(TreeElement::Div { .. }) => !current_coords.is_inverted(),
_ => unreachable!(),
},
);
break;
}
Some((TreeDir::Right, _)) => {}
Some((TreeDir::This, _)) => unreachable!(),
None => return partials,
}
}
}
TreeElement::Div { .. }
| TreeElement::Mul { .. }
| TreeElement::Sub { .. }
| TreeElement::Add { .. } => current_coords.push(TreeDir::Left, current_coords.is_inverted()),
TreeElement::Neg { .. } => {
current_coords.push(TreeDir::Right, !current_coords.is_inverted())
}
}
}
}
let base = filled.evaluate().unwrap();
/// Fill empty slots in the given partials, in order.
/// Will panic if we run out of numbers to fill with.
///
/// Returns a new tree with filled partials.
pub fn fill_partials<'a>(
tree: &'a TreeElement,
partials: impl Iterator<Item = &'a TreeCoords>,
mut numbers: impl Iterator<Item = &'a Symb>,
) -> TreeElement {
let mut tmp_tree = tree.clone();
for p in partials {
let x = p.get_from_mut(&mut tmp_tree).unwrap();
// Test each slot:
// Increase its value by 1, and record its effect on the
// expression's total value.
// This isn't a perfect metric, but it's pretty good.
let mut slots: Vec<(usize, f32)> = board
.get_board()
.iter()
.enumerate()
.filter_map(|(i, s)| if s.is_some() { None } else { Some(i) })
.map(|i| {
let mut new_tree = filled.clone();
new_tree.get_board_mut()[i] = Some(Symb::from_char('6').unwrap());
let x_str = match x {
TreeElement::Partial(s) => s,
_ => unreachable!(),
};
let mut new_str = String::new();
for c in x_str.chars() {
if c == '_' {
new_str.push_str(&format!("{}", numbers.next().unwrap()))
} else {
new_str.push(c);
}
}
*x = TreeElement::Partial(new_str)
}
tmp_tree
}
/// Find all empty slots in the given partials
/// Returns (coords of partial, index of slot in string)
pub fn free_chars<'a>(
tree: &'a TreeElement,
partials: impl Iterator<Item = &'a TreeCoords>,
) -> Vec<(&TreeCoords, usize)> {
partials
.flat_map(|x| match x.get_from(tree) {
Some(TreeElement::Partial(s)) => {
s.chars()
.enumerate()
.filter_map(move |(i, c)| if c == '_' { Some((x, i)) } else { None })
}
_ => unreachable!(),
// This shouldn't ever be None
(i, new_tree.evaluate().unwrap() - base)
})
.collect()
.collect();
// Sort by most to least influence
slots.sort_by(|a, b| b.1.abs().partial_cmp(&a.1.abs()).unwrap());
slots
}
/// Find the maximum possible value of the given board
#[allow(dead_code)]
pub fn maximize_value(board: &Board) -> Board {
let n_free = board.get_board().iter().filter(|x| x.is_none()).count();
// Assume we have 10 or fewer available slots
if n_free >= 10 {
panic!()
}
let available_numbers = (0..=9)
.map(|x| match x {
0 => Symb::Zero,
x => Symb::Number(NonZeroU8::new(x).unwrap()),
})
.filter(|x| !board.contains(*x))
.collect::<Vec<_>>();
let slots = free_slots_by_influence(&board);
let all_symbols = {
// We need this many from the bottom, and this many from the top.
let neg_count = slots.iter().filter(|(_, x)| *x <= 0.0).count();
let pos_count = slots.iter().filter(|(_, x)| *x > 0.0).count();
let mut a_iter = available_numbers
.iter()
.take(neg_count)
.chain(available_numbers.iter().rev().take(pos_count).rev());
let mut g = slots
// Group slots with equal weights
// and count the number of elements in each group
.iter()
.group_by(|x| x.1)
.into_iter()
.map(|(_, x)| x.count())
// Generate the digits we should try for each group of
// equal-weight slots
.map(|s| {
(0..s)
.map(|_| a_iter.next().unwrap().clone())
.permutations(s)
.unique()
.collect_vec()
})
// Now, covert this to an array of all cartesian products
// of this set of sets
.multi_cartesian_product()
.map(|x| x.iter().flatten().cloned().collect_vec())
.map(|v| slots.iter().zip(v).collect_vec())
.collect_vec();
// Sort these vectors so the order of values
// matches the order of empty slots
g.iter_mut()
.for_each(|v| v.sort_by(|(a, _), (b, _)| b.0.partial_cmp(&a.0).unwrap()));
g.into_iter()
.map(|v| v.into_iter().map(|(_, s)| s).collect_vec())
};
let mut best_board = None;
let mut best_value = None;
for i in all_symbols {
let mut i_iter = i.iter();
let filled = Board::from_board(board.get_board().map(|x| match x {
None => i_iter.next().cloned(),
_ => x,
}));
let val = filled.evaluate();
if let Some(val) = val {
if let Some(best) = best_value {
if val > best {
best_value = Some(val);
best_board = Some(filled)
}
} else {
best_value = Some(val);
best_board = Some(filled)
}
}
}
best_board.unwrap()
}

View File

@ -1,137 +0,0 @@
use std::fmt::{Debug, Display};
use crate::board::TreeElement;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TreeDir {
Right,
Left,
This,
}
#[derive(Clone, Copy)]
pub struct TreeCoords {
len: usize,
coords: [TreeDir; 4],
inversion: [bool; 4],
}
impl Display for TreeCoords {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.is_inverted() {
write!(f, "-")?
} else {
write!(f, "+")?
}
for c in self.coords {
match c {
TreeDir::Left => write!(f, "L")?,
TreeDir::Right => write!(f, "R")?,
TreeDir::This => break,
}
}
Ok(())
}
}
impl Debug for TreeCoords {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Display::fmt(self, f)
}
}
#[allow(dead_code)]
impl TreeCoords {
pub fn new() -> Self {
Self {
len: 0,
coords: [TreeDir::This; 4],
inversion: [false; 4],
}
}
pub fn push(&mut self, dir: TreeDir, invert: bool) {
if self.len == 4 || dir == TreeDir::This {
return;
}
self.coords[self.len] = dir;
self.inversion[self.len] = invert;
self.len += 1;
}
pub fn pop(&mut self) -> Option<(TreeDir, bool)> {
if self.len == 0 {
return None;
}
self.len -= 1;
let dir = self.coords[self.len];
let inv = self.inversion[self.len];
self.coords[self.len] = TreeDir::This;
self.inversion[self.len] = false;
Some((dir, inv))
}
pub fn is_inverted(&self) -> bool {
if self.len == 0 {
false
} else {
self.inversion[self.len - 1]
}
}
pub fn get_from<'a>(&self, mut tree: &'a TreeElement) -> Option<&'a TreeElement> {
for i in 0..self.len {
match &self.coords[i] {
TreeDir::Left => {
if let Some(t) = tree.left() {
tree = t
} else {
return None;
}
}
TreeDir::Right => {
if let Some(t) = tree.right() {
tree = t
} else {
return None;
}
}
TreeDir::This => return Some(tree),
}
}
Some(tree)
}
pub fn get_from_mut<'a>(&self, mut tree: &'a mut TreeElement) -> Option<&'a mut TreeElement> {
for i in 0..self.len {
match &self.coords[i] {
TreeDir::Left => {
if let Some(t) = tree.left_mut() {
tree = t
} else {
return None;
}
}
TreeDir::Right => {
if let Some(t) = tree.right_mut() {
tree = t
} else {
return None;
}
}
TreeDir::This => return Some(tree),
}
}
Some(tree)
}
}

View File

@ -1,4 +1,6 @@
use std::fmt::Display;
use anyhow::Result;
use itertools::Itertools;
use std::fmt::Write;
use termion::color::{self, Color};
use super::{PlayerAction, TreeElement};
@ -47,7 +49,8 @@ enum Token {
#[derive(Clone)]
pub struct Board {
board: [Option<(Symb, Player)>; 11],
board: [Option<Symb>; 11],
placed_by: [Option<Player>; 11],
/// Number of Nones in `board`
free_spots: usize,
@ -56,30 +59,14 @@ pub struct Board {
last_placed: Option<usize>,
}
impl Display for Board {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Print board
for (i, o) in self.board.iter().enumerate() {
match o {
Some((symb, player)) => write!(
f,
"{}{}{}",
// If index matches last placed, draw symbol in red.
// If last_placed is None, this check will always fail
// since self.board.len is always greater than i.
if self.last_placed.unwrap_or(self.board.len()) == i {
color::Fg(&color::Red as &dyn Color)
} else {
color::Fg(player.color())
},
symb,
color::Fg(color::Reset)
)?,
None => write!(f, "_")?,
}
}
Ok(())
impl ToString for Board {
fn to_string(&self) -> String {
let mut s = String::new();
s.extend(
self.board
.map(|x| x.map(|s| s.to_char().unwrap()).unwrap_or('_')),
);
s
}
}
@ -89,34 +76,58 @@ impl Board {
Self {
free_spots: 11,
board: Default::default(),
placed_by: Default::default(),
last_placed: None,
}
}
pub fn iter(&self) -> impl Iterator<Item = &Option<(Symb, Player)>> {
self.board.iter()
pub fn get_board(&self) -> &[Option<Symb>; 11] {
&self.board
}
pub fn get(&self, idx: usize) -> Option<&Option<(Symb, Player)>> {
self.board.get(idx)
pub fn get_board_mut(&mut self) -> &mut [Option<Symb>; 11] {
&mut self.board
}
pub fn is_done(&self) -> bool {
self.free_spots == 0
}
pub fn prettyprint(&self) -> Result<String> {
let mut s = String::new();
// Print board
for (i, (symb, p)) in self.board.iter().zip(self.placed_by.iter()).enumerate() {
match symb {
Some(symb) => write!(
s,
"{}{}{}",
// If index matches last placed, draw symbol in red.
// If last_placed is None, this check will always fail
// since self.board.len is always greater than i.
if self.last_placed.unwrap_or(self.board.len()) == i {
color::Fg(&color::Red as &dyn Color)
} else {
match p {
Some(player) => color::Fg(player.color()),
None => color::Fg(&color::Reset as &dyn Color),
}
},
symb,
color::Fg(color::Reset)
)?,
None => write!(s, "_")?,
}
}
Ok(s)
}
pub fn size(&self) -> usize {
self.board.len()
}
pub fn contains(&self, s: Symb) -> bool {
for i in self.board.iter().flatten() {
if i.0 == s {
return true;
}
}
false
self.board.iter().contains(&Some(s))
}
/// Is the given action valid?
@ -137,14 +148,14 @@ impl Board {
}
let r = &self.board[action.pos + 1];
if r.is_some_and(|(s, _)| s.is_op() && !s.is_minus()) {
if r.is_some_and(|s| s.is_op() && !s.is_minus()) {
return false;
}
}
Symb::Zero => {
if action.pos != 0 {
let l = &self.board[action.pos - 1].map(|x| x.0);
let l = &self.board[action.pos - 1];
if l == &Some(Symb::Div) {
return false;
}
@ -156,8 +167,8 @@ impl Board {
return false;
}
let l = &self.board[action.pos - 1].map(|x| x.0);
let r = &self.board[action.pos + 1].map(|x| x.0);
let l = &self.board[action.pos - 1];
let r = &self.board[action.pos + 1];
if action.symb == Symb::Div && r == &Some(Symb::Zero) {
return false;
@ -184,7 +195,8 @@ impl Board {
return false;
}
self.board[action.pos] = Some((action.symb, player));
self.board[action.pos] = Some(action.symb);
self.placed_by[action.pos] = Some(player);
self.free_spots -= 1;
self.last_placed = Some(action.pos);
true
@ -195,7 +207,7 @@ impl Board {
let mut is_neg = true; // if true, - is negative. if false, subtract.
let mut current_num = String::new();
for s in self.board.iter().map(|x| x.map(|(s, _)| s)) {
for s in self.board.iter() {
match s {
Some(Symb::Div) => {
tokens.push(Token::Value(current_num.clone()));
@ -316,8 +328,18 @@ impl Board {
self.to_tree().evaluate()
}
/// Hacky method to parse a board from a string
pub fn from_string(s: &str, current_player: Player) -> Option<Self> {
pub fn from_board(board: [Option<Symb>; 11]) -> Self {
let free_spots = board.iter().filter(|x| x.is_none()).count();
Self {
board,
placed_by: Default::default(),
free_spots,
last_placed: None,
}
}
/// Parse a board from a string
pub fn from_string(s: &str) -> Option<Self> {
if s.len() != 11 {
return None;
}
@ -328,7 +350,7 @@ impl Board {
if c == '_' {
Some(None)
} else {
Symb::from_char(c).map(|s| Some((s, current_player)))
Symb::from_char(c).map(|s| Some(s))
}
})
.collect::<Vec<_>>();
@ -348,6 +370,7 @@ impl Board {
Some(Self {
board,
placed_by: Default::default(),
free_spots,
last_placed: None,
})