2023-04-05 09:08:43 -07:00

88 lines
1.9 KiB
TeX
Executable File

% use [nosolutions] flag to hide solutions.
% use [solutions] flag to show solutions.
\documentclass[
solutions,
nowarning,
%singlenumbering
]{../../resources/ormc_handout}
\usepackage{tikz}
\usetikzlibrary{
matrix,
decorations.pathreplacing,
calc,
positioning,
fit
}
% Let's give clarifications about the meaning of Z and R when we use them in the first problems.
% Definitely define $R^n$ before using. Optionally you may add a problem "convince yourself that $R^2$ is a plane and $R^3$ is a 3-d space".
% Maybe we can add an example of a linear transformation from R^2 to R^2? Rotation? Scaling of y-axis?
% Slow down, understand linear transformations fully.
%\usepackage{lua-visual-debug}
\renewcommand{\arraystretch}{1.2}
\begin{document}
\maketitle
<Advanced 2>
<Spring 2023>
{Linear Maps}
{
Prepared by Mark on \today \\
}
\input{parts/0 fields}
\input{parts/1 spaces}
\input{parts/2 linear}
\input{parts/3 matrices}
\section{Norms}
\definition{}
If $V$ is a vector space, a \textit{norm} in $V$ is a function $V \to \mathbb{R}^+$ that satisfies the following properties, \\
Where $x, y \in V$ and $c \in F$:
\begin{itemize}
\item Absolute Homogeneity: $||cx|| = |c|~||x||$
\item Positive-Definite: $||x|| \geq 0$ with equality iff $x = 0$.
\item Triangle Inequalty: $||x+y|| \leq ||x|| + ||y||$
\end{itemize}
\problem{}
Show that the \textit{euclidian norm} defined by $||~[a, b]~|| = \sqrt{a^2 + b^2}$ is a norm on $\mathbb{R}^2$
\vfill
\problem{}
Show that in any vector space with an inner product, the \textit{induced norm} $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.
\vfill
\problem{}
Show that every norm satisfies the reverse triangle inequality:
$$
||x - y|| \geq |~||x|| - ||y||~|
$$
\vfill
\problem{}
Prove the Cauchy-Schwartz inequality:
$$
||\langle x, y \rangle|| = ||x||~||y||
$$
\vfill
\end{document}