2023-05-04 11:48:07 -07:00

51 lines
1.1 KiB
TeX

\section{Table of Prime Knots}
A knot's \textit{crossing number} is the minimal number of crossings its projection must contain. In general, it is very difficult to determine a knot's crossing number.
\vspace{1mm}
This table contains the 15 smallest prime knots, ordered by crossing number. \par
Mirror images are not included, even if the mirror image produces a nonisomorphic knot.
\vfill
% Images are from the appendix of the Knot book.
{
\def\w{24mm}
\foreach \l/\c/\r in {%
{3_1}/{4_1}/{5_1},%
{5_2}/{6_1}/{6_2},%
{6_3}/{7_1}/{7_2},%
{7_3}/{7_4}/{7_5},%
{7_6}/{7_7}/{8_1}%
}{
\hfill
\begin{minipage}{\w}
\begin{center}
\includegraphics[width=\linewidth]{knot table/\l.png} \par
\vspace{2mm}
{\huge $\l$}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{\w}
\begin{center}
\includegraphics[width=\linewidth]{knot table/\c.png} \par
\vspace{2mm}
{\huge $\c$}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{\w}
\begin{center}
\includegraphics[width=\linewidth]{knot table/\r.png} \par
\vspace{2mm}
{\huge $\r$}
\end{center}
\end{minipage}
\hfill~\par
\vspace{4mm}
}
}
\vfill
\pagebreak