Mark 0a6b1780fe
Some checks failed
CI / Typos (pull_request) Successful in 23s
CI / Typst formatting (pull_request) Successful in 8s
CI / Build (pull_request) Failing after 7m24s
FIR draft
2025-01-22 21:48:45 -08:00

91 lines
1.4 KiB
TeX

\section{Division}
Now that you can multiply, division should be easy. All you need to do is work backwards. \\
Let's look at our first example again: $3 \times 2 = 6$.
\medskip
We can easily see that $6 \div 3 = 2$
\begin{center}
\begin{tikzpicture}[scale=1]
\cdscale{\cdscalefn(2)}{1}{C}
\cdscale{0}{0}{D}
\slideruleind
{\cdscalefn(6)}
{1}
{Align here}
\slideruleind
{\cdscalefn(2)}
{1}
{2}
\end{tikzpicture}
\end{center}
and that $6 \div 2 = 3$:
\begin{center}
\begin{tikzpicture}[scale=1]
\cdscale{\cdscalefn(3)}{-3}{C}
\cdscale{0}{-4}{D}
\slideruleind
{\cdscalefn(6)}
{-3}
{Align here}
\slideruleind
{\cdscalefn(3)}
{-3}
{3}
\end{tikzpicture}
\end{center}
If your left-hand index is off the scale, read the right-hand one. \\
Consider $42.25 \div 6.5 = 6.5$:
\begin{center}
\begin{tikzpicture}[scale=1]
\cdscale{\cdscalefn(6.5) - \cdscalefn(10)}{1}{C}
\cdscale{0}{0}{D}
\slideruleind
{\cdscalefn(4.225)}
{1}
{Align here}
\slideruleind
{\cdscalefn(6.5)}
{1}
{6.5}
\end{tikzpicture}
\end{center}
Place your decimal points carefully.
\vfill
\problem{}
Compute the following using your slide rule. \par
\begin{enumerate}
\item $135 \div 15$
\item $68.2 \div 0.575$
\item $(118 \times 0.51) \div 6.6$
\end{enumerate}
\begin{solution}
\begin{enumerate}
\item $135 \div 15 = 9$
\item $68.2 \div 0.575 = 118.609$
\item $(118 \times 0.51) \div 6.6 = 9.118$
\end{enumerate}
\end{solution}
\vfill
\pagebreak