\section{Division} Now that you can multiply, division should be easy. All you need to do is work backwards. \\ Let's look at our first example again: $3 \times 2 = 6$. \medskip We can easily see that $6 \div 3 = 2$ \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(2)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(6)} {1} {Align here} \slideruleind {\cdscalefn(2)} {1} {2} \end{tikzpicture} \end{center} and that $6 \div 2 = 3$: \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(3)}{-3}{C} \cdscale{0}{-4}{D} \slideruleind {\cdscalefn(6)} {-3} {Align here} \slideruleind {\cdscalefn(3)} {-3} {3} \end{tikzpicture} \end{center} If your left-hand index is off the scale, read the right-hand one. \\ Consider $42.25 \div 6.5 = 6.5$: \begin{center} \begin{tikzpicture}[scale=1] \cdscale{\cdscalefn(6.5) - \cdscalefn(10)}{1}{C} \cdscale{0}{0}{D} \slideruleind {\cdscalefn(4.225)} {1} {Align here} \slideruleind {\cdscalefn(6.5)} {1} {6.5} \end{tikzpicture} \end{center} Place your decimal points carefully. \vfill \problem{} Compute the following using your slide rule. \par \begin{enumerate} \item $135 \div 15$ \item $68.2 \div 0.575$ \item $(118 \times 0.51) \div 6.6$ \end{enumerate} \begin{solution} \begin{enumerate} \item $135 \div 15 = 9$ \item $68.2 \div 0.575 = 118.609$ \item $(118 \times 0.51) \div 6.6 = 9.118$ \end{enumerate} \end{solution} \vfill \pagebreak