Tropical typos #9
@ -104,7 +104,7 @@ Is there a tropical multiplicative identity? \
|
||||
Do tropical multiplicative inverses always exist? \
|
||||
#note([
|
||||
For every $x != #sym.infinity$, does there exist an inverse $y$ so that $x #tm y = i$, \
|
||||
where $i$ is the additive identity?
|
||||
where $i$ is the multiplicative identity?
|
||||
])
|
||||
|
||||
#solution([Yes, it is $-x$. For $x != 0$, $x #tm (-x) = 0$])
|
||||
|
@ -5,7 +5,7 @@
|
||||
= Tropical Cubic Polynomials
|
||||
|
||||
#problem()
|
||||
Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \
|
||||
Consider the polynomial $f(x) = x^3 #tp 1x^2 #tp 3x #tp 6$. \
|
||||
- sketch a graph of this polynomial
|
||||
- use this graph to find the roots of $f$
|
||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||
@ -43,7 +43,7 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \
|
||||
#pagebreak() // MARK: page
|
||||
|
||||
#problem()
|
||||
Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \
|
||||
Consider the polynomial $f(x) = x^3 #tp 1x^2 #tp 6x #tp 6$. \
|
||||
- sketch a graph of this polynomial
|
||||
- use this graph to find the roots of $f$
|
||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||
@ -118,10 +118,10 @@ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b
|
||||
#solution([
|
||||
|
||||
$
|
||||
B = min(b, (a+c)/2, (2a+d)/2)
|
||||
B = min(b, (a+c)/2, (2a+d)/3)
|
||||
$
|
||||
$
|
||||
C = min(c, (b+d)/2, (a+2d)/2)
|
||||
C = min(c, (b+d)/2, (a+2d)/3)
|
||||
$
|
||||
])
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user