diff --git a/src/Advanced/Tropical Polynomials/parts/00 arithmetic.typ b/src/Advanced/Tropical Polynomials/parts/00 arithmetic.typ index 819e524..81c4c6e 100644 --- a/src/Advanced/Tropical Polynomials/parts/00 arithmetic.typ +++ b/src/Advanced/Tropical Polynomials/parts/00 arithmetic.typ @@ -104,7 +104,7 @@ Is there a tropical multiplicative identity? \ Do tropical multiplicative inverses always exist? \ #note([ For every $x != #sym.infinity$, does there exist an inverse $y$ so that $x #tm y = i$, \ - where $i$ is the additive identity? + where $i$ is the multiplicative identity? ]) #solution([Yes, it is $-x$. For $x != 0$, $x #tm (-x) = 0$]) diff --git a/src/Advanced/Tropical Polynomials/parts/02 cubic.typ b/src/Advanced/Tropical Polynomials/parts/02 cubic.typ index 704b0c4..e8691c6 100644 --- a/src/Advanced/Tropical Polynomials/parts/02 cubic.typ +++ b/src/Advanced/Tropical Polynomials/parts/02 cubic.typ @@ -5,7 +5,7 @@ = Tropical Cubic Polynomials #problem() -Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \ +Consider the polynomial $f(x) = x^3 #tp 1x^2 #tp 3x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. @@ -43,7 +43,7 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \ #pagebreak() // MARK: page #problem() -Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \ +Consider the polynomial $f(x) = x^3 #tp 1x^2 #tp 6x #tp 6$. \ - sketch a graph of this polynomial - use this graph to find the roots of $f$ - write (and expand) a product of linear factors with the same graph as $f$. @@ -118,10 +118,10 @@ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b #solution([ $ - B = min(b, (a+c)/2, (2a+d)/2) + B = min(b, (a+c)/2, (2a+d)/3) $ $ - C = min(c, (b+d)/2, (a+2d)/2) + C = min(c, (b+d)/2, (a+2d)/3) $ ])