Compare commits
3 Commits
f4d53edff9
...
quantum
| Author | SHA1 | Date | |
|---|---|---|---|
| 1d8782a03b | |||
| 48e7abd47e | |||
| 7922c2accc |
@ -7,5 +7,5 @@
|
||||
)
|
||||
|
||||
#problem()
|
||||
$n$ black and $n$ white points are randomly distributed on a plane. No three points are colinear.\
|
||||
$n$ black and $n$ white points are randomly distributed on a plane. No three points are collinear.\
|
||||
Show that it is always possible draw $n$ nonintersecting lines between pairs of points of different colors.
|
||||
|
||||
@ -83,7 +83,7 @@ All integrals are of the form $integral_a^b 1 #h(1mm) d x$.
|
||||
|
||||
$
|
||||
f_(n+1) = g_n & = x + y + 3^n c + 3^0 + 3^1 + ... + 3^n \
|
||||
& = x + y + 3^n c + sum_(i=0)^n 3^i \
|
||||
& = x + y + 3^n c + sum_(i=0)^n 3^i \
|
||||
& = x + y + 3^n c + (3^(n+1) + 1)/2
|
||||
$
|
||||
]
|
||||
|
||||
Reference in New Issue
Block a user