Compare commits
1 Commits
251d9bb9e5
...
main
Author | SHA1 | Date | |
---|---|---|---|
121780df6c |
@ -1,5 +1,11 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
// Resources:
|
||||
//
|
||||
// https://eschermath.org/wiki/Wallpaper_Patterns.html
|
||||
// https://mathworld.wolfram.com/WallpaperGroups.html
|
||||
// https://en.wikipedia.org/wiki/Wallpaper_group
|
||||
|
||||
#show: handout.with(
|
||||
title: [Wallpaper Symmetry],
|
||||
by: "Mark",
|
||||
@ -13,3 +19,8 @@
|
||||
|
||||
#include "parts/02 rotate.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/03 problems.typ"
|
||||
#pagebreak()
|
||||
|
||||
#include "parts/04 theorem.typ"
|
||||
|
@ -5,14 +5,14 @@
|
||||
|
||||
#definition()
|
||||
A _Euclidean isometry_ is a transformation of the plane that preserves distances. \
|
||||
Intuituvely, an isometry moves objects on the plane without deforming them.
|
||||
Intuitively, an isometry moves objects on the plane without deforming them.
|
||||
|
||||
There are four classes of _Euclidean isometries_:
|
||||
- Translation
|
||||
- Reflection
|
||||
- Rotation
|
||||
- Glide reflection
|
||||
#note([We can prove that there are no others, but this is beyond the scope of this handout.]) \
|
||||
There are four classes of Euclidean isometries:
|
||||
- translations
|
||||
- reflections
|
||||
- rotations
|
||||
- glide reflections
|
||||
#note([We can prove there are no others, but this is beyond the scope of this handout.]) \
|
||||
A simple example of each isometry is shown below:
|
||||
|
||||
#let demo(c) = {
|
||||
@ -41,7 +41,7 @@ A simple example of each isometry is shown below:
|
||||
import cetz.draw: *
|
||||
|
||||
demo(ored)
|
||||
translate(x: 0, y: -1.5)
|
||||
translate(x: -1.0, y: -1.0)
|
||||
demo(oblue)
|
||||
})
|
||||
#v(1fr)
|
||||
@ -105,7 +105,7 @@ A simple example of each isometry is shown below:
|
||||
(0, 0, 0, 0),
|
||||
(0, 0, 0, 0),
|
||||
))
|
||||
translate(x: 1.5, y: 0)
|
||||
translate(x: 2, y: 0)
|
||||
|
||||
demo(oblue)
|
||||
|
||||
@ -119,13 +119,33 @@ A simple example of each isometry is shown below:
|
||||
|
||||
#definition()
|
||||
A _wallpaper_ is a two-dimensional pattern that...
|
||||
- has translational symmetry in at least two directions
|
||||
#note([(and therefore fills the plane)])
|
||||
- has translational symmetry in at least two non-parallel directions (and therefore fills the plane) \
|
||||
#note[
|
||||
"Translational symmetry" means that we can slide the entire wallpaper in some direction, \
|
||||
eventually mapping the pattern to itself.]
|
||||
- has a countable number of reflection, rotation, or glide symmetries. \
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Is a plain square grid a valid wallpaper?
|
||||
|
||||
#solution([
|
||||
Yes!
|
||||
- It has translational symmetry in the horizontal and vertical directions
|
||||
- It has a countable number of symmetries---namely, six distinct mirror lines (horizontal, vertical, and diagonal) duplicated once per square.
|
||||
- A square grid is #sym.convolve`442`
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Is the empty plane a valid wallpaper?
|
||||
|
||||
#solution([
|
||||
No, since it has uncountably many symmetries.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
@ -4,51 +4,62 @@
|
||||
= Mirror Symmetry
|
||||
|
||||
#definition()
|
||||
A _mirror symmetry_ is a reflection about a line. \
|
||||
If $n$ mirror symmetries intersect at a point, we say that point is an _$n$-fold mirror node_.
|
||||
A _reflection_ is a transformation of the plane obtained by reflecting all points about a line. \
|
||||
If this reflection maps the wallpaper to itself, we have a _mirror symmetry_. \
|
||||
|
||||
#v(3mm)
|
||||
If $n$ such mirror lines intersect at a point, they form a _mirror node of order $n$_. \
|
||||
#note[Mirror nodes with order 1 do not exist (i.e, $n >= 2$). A line does not intersect itself!]
|
||||
|
||||
Two mirror nodes are identical if we can map one to the other with a translation and a rotation \
|
||||
while preserving the pattern on the wallpaper.
|
||||
#v(2mm)
|
||||
|
||||
Two mirror nodes on a wallpaper are identical if we can map one to the other with a translation and a rotation while preserving the pattern on that wallpaper.
|
||||
|
||||
#problem(label: "pat333")
|
||||
Find all three three distinct mirror nodes in the following pattern. \
|
||||
What is the order of each intersection? \
|
||||
Find all three distinct mirror nodes in the following pattern. \
|
||||
What is the order of each node? \
|
||||
#hint([
|
||||
You may notice rotational symmetry in this pattern. \
|
||||
Don't worry about that for now.
|
||||
Don't worry about that yet, we'll discuss it later.
|
||||
])
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 50mm,
|
||||
rows: 45mm,
|
||||
image("../res/wolfram/p3m1.svg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([This is `*333`])
|
||||
#solution([
|
||||
The mirror nodes are:
|
||||
- the center of the amber cross
|
||||
- the center of each right-handed group of three adjacent hexagons
|
||||
- the center of each left-handed group of three adjacent hexagons
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#definition()
|
||||
_Orbifold notation_ gives us a way to write down the symmetries of a wallpaper. \
|
||||
_Orbifold notation_ gives us a way to describe the symmetries of a wallpaper. \
|
||||
It defines a _signature_ that fully describes all the symmetries of a given pattern. \
|
||||
We will introduce orbifold notation one symmetry at a time.
|
||||
|
||||
#definition()
|
||||
In orbifold notation, mirror nodes are denoted by a `*` followed by at least one integer. \
|
||||
Every integer $n$ following a `*` denotes a mirror node of order $n$.
|
||||
In orbifold notation, mirror nodes are denoted by a #sym.convolve followed by a list of integer. \
|
||||
Every integer $n$ following a #sym.convolve denotes a mirror node of order $n$.
|
||||
|
||||
#v(3mm)
|
||||
#v(2mm)
|
||||
|
||||
The order of these integers doesn't matter. #sym.convolve`234` and #sym.convolve`423` are the same signature. \
|
||||
However, we usually denote $n$-fold symmetries in descending order (that is, like #sym.convolve`432`). \
|
||||
If we have many nodes of the same order, integers may be repeated.
|
||||
|
||||
The order of these integers doesn't matter. `*234` and `*423` are the same signature. \
|
||||
However, we usually denote $n$-fold symmetries in descending order (that is, like `*432`).
|
||||
|
||||
#problem()
|
||||
What is the signature of the wallpaper in @pat333?
|
||||
#solution([It is `*333`])
|
||||
What is the signature of the wallpaper in @pat333? \
|
||||
#hint[Again, ignore rotational symmetry for now.]
|
||||
#solution([It is #sym.convolve`333`])
|
||||
|
||||
|
||||
// MARK: page
|
||||
@ -62,13 +73,13 @@ Find the signature of the following pattern.
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 50mm,
|
||||
rows: 60mm,
|
||||
image("../res/*632-a.png", height: 100%),
|
||||
)
|
||||
|
||||
|
||||
#solution([
|
||||
It is `*632`:
|
||||
It is #sym.convolve`632`:
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
@ -81,7 +92,7 @@ Find the signature of the following pattern.
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Draw a wallpaper pattern with signature `*2222`
|
||||
Draw a wallpaper pattern with signature #sym.convolve`2222`
|
||||
|
||||
#solution([
|
||||
Sample solutions are below.
|
||||
@ -97,3 +108,25 @@ Draw a wallpaper pattern with signature `*2222`
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#remark()
|
||||
In an exceptional case, we have two parallel mirror lines. \
|
||||
Consider the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/**.png", height: 100%),
|
||||
)
|
||||
|
||||
The signature of this pattern is #sym.convolve#sym.convolve
|
||||
|
||||
#problem()
|
||||
Draw another wallpaper pattern with signature #sym.convolve#sym.convolve.
|
||||
|
||||
#v(1fr)
|
||||
|
@ -4,16 +4,18 @@
|
||||
= Rotational Symmetry
|
||||
|
||||
|
||||
Another symmetry is n-fold rotational symmetry about a point, whose signature is written n. Multiple bold numbers means multiple points of rotational symmetry.
|
||||
|
||||
Two points of rotational symmetry are considered the same if we can perform a translation + rotation sending one to the other, while leaving the pattern the same.
|
||||
|
||||
There are also patterns with both kinds of symmetries. To classify such patterns, first find all the mirror symmetries, then all the rotational symmetries that are not accounted
|
||||
for by the mirror symmetries.
|
||||
|
||||
By convention we write the rotational symmetries before
|
||||
the `*`.
|
||||
#definition()
|
||||
A wallpaper may also have $n$-fold rotational symmetry about a point.
|
||||
#v(2mm)
|
||||
This means there are no more than $n$ rotations around that point that map the wallpaper to itself.
|
||||
#v(2mm)
|
||||
As before, two points of rotational symmetry are identical if we can perform a translation and rotation that maps one to the other without changing the wallpaper.
|
||||
|
||||
#definition()
|
||||
In orbifold notation, rotation is specified similarly to reflection, but uses the prefix #sym.diamond.stroked.small. \
|
||||
For example:
|
||||
- #sym.diamond.stroked.small`333` denotes a pattern with three distinct centers of rotation of order 3.
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2` denotes a pattern with one rotation center of order 4 and one mirror node of order 2.
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
@ -25,91 +27,155 @@ the `*`.
|
||||
|
||||
|
||||
#problem()
|
||||
Mark the three rotation points in Figure 1.
|
||||
Find the three rotation centers in the left wallpaper. \
|
||||
What are their orders?
|
||||
|
||||
#solution([This is #sym.diamond.stroked.small`333`])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Find the signature of the pattern in Figure 2.
|
||||
Find the signature of the pattern on the right.
|
||||
|
||||
#solution([`3 *3`])
|
||||
#solution([This is #sym.diamond.stroked.small`3`#sym.convolve`3`])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#remark()
|
||||
You may have noticed that we could have an ambiguous classification, since two reflections are equivalent to a translation and a rotation.
|
||||
We thus make the following distinction: _rotational symmetry that can be explained by reflection is not rotational symmetry._
|
||||
|
||||
#v(2mm)
|
||||
|
||||
In other words, when classifying a pattern...
|
||||
- we first find all mirror symmetries,
|
||||
- then all rotational symmetries that are not accounted for by reflection.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
Some exceptional cases: It is possible to have two different parallel mirror lines. In
|
||||
this situation the signature is ∗ ∗
|
||||
// MARK: glide
|
||||
|
||||
= Glide Reflections
|
||||
|
||||
#definition()
|
||||
Another type of symmetry is the _glide reflection_, denoted #sym.times.
|
||||
|
||||
A glide reflection is the result of a translation along a line followed by reflection about that line.
|
||||
|
||||
For example, consider the following pattern:
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/*x-a.png", height: 100%),
|
||||
)
|
||||
|
||||
#problem()
|
||||
Convince yourself that all mirror lines in this pattern are _not_ distinct. /
|
||||
In other words, this pattern has only one mirror symmetry.
|
||||
|
||||
#solution([
|
||||
There may seem to be two, but they are identical. \
|
||||
We can translate one onto the other.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
Use the following picture to find the glide reflection in the above pattern.
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 70mm,
|
||||
image("../res/*x-b.png", height: 100%),
|
||||
)
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#remark()
|
||||
The signature of this wallpaper is #sym.convolve#sym.times.
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#definition()
|
||||
If none of the above symmetries appear in a pattern, then we only have simple translational symmetry. We denote this with the signature #sym.circle.small.
|
||||
|
||||
#remark()
|
||||
In summary, to find the signature of a pattern:
|
||||
- find the mirror lines (#sym.convolve) and the distinct intersections;
|
||||
- then find the rotation centers (#sym.diamond.stroked.small) not explained by reflection;
|
||||
- then find all glide reflections (#sym.times) that do not cross a mirror line.
|
||||
- If we have none of the above, our pattern must be #sym.circle.small.
|
||||
|
||||
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 50mm,
|
||||
image("../res/wiki/Wallpaper_group-cm-4.jpg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
This is #sym.convolve#sym.times.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find the signature of the following pattern:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 60mm,
|
||||
image("../res/**.png", height: 100%),
|
||||
)
|
||||
|
||||
#problem()
|
||||
Draw another wallpaper pattern with signature `**`
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
There are two other types of symmetries. The first called a miracle whose signature is
|
||||
written ×. It is the result of a glide reflection, which is translation along a line followed
|
||||
by reflection about that line.
|
||||
This occurs when there is orientation-reversing symmetry not accounted for by a mirror.
|
||||
For example, if we modify Figure 3 slightly we get a signature of ∗×
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 60mm,
|
||||
image("../res/*x-b.png", height: 100%),
|
||||
image("../res/*x-a.png", height: 100%),
|
||||
)
|
||||
|
||||
Signature ∗×. There is a glide reflection (shown by the by the dotted line)
|
||||
taking the clockwise spiral to the counter-clockwise spiral, reversing orientation
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#problem()
|
||||
Find the signatures of the following patterns:
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 60mm,
|
||||
image("../res/wiki/Wallpaper_group-cm-4.jpg", height: 100%),
|
||||
image("../res/wiki/Wallpaper_group-p4g-2.jpg", height: 100%),
|
||||
)
|
||||
|
||||
#solution([
|
||||
This is #sym.diamond.stroked.small`4`#sym.convolve`2`
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
There is another exceptional case with two miracles, where there are two glide reflection
|
||||
symmetries along distinct lines. There are other glide reflections, but they can be obtained
|
||||
by composing the two marked in the diagram.
|
||||
#problem()
|
||||
Find two glide reflections in the following pattern.\
|
||||
#note[(and thus show that its signature is #sym.times#sym.times.)]
|
||||
|
||||
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 60mm,
|
||||
columns: 1fr,
|
||||
rows: 70mm,
|
||||
image("../res/xx-b.png", height: 100%),
|
||||
image("../res/xx-a.png", height: 100%),
|
||||
)
|
||||
|
||||
Figure 7: There are two distinct mirrorless crossings, so the signature is `xx`.
|
||||
Lastly, if none of the above symmetries appear in the pattern, then there is only regular
|
||||
translational symmetry, which we denote by O.
|
||||
#solution([
|
||||
#table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: 1fr,
|
||||
rows: 40mm,
|
||||
image("../res/xx-a.png", height: 100%),
|
||||
)
|
||||
])
|
||||
|
||||
In summary, to find the signature of a pattern:
|
||||
- Find the mirror lines (∗) and the distinct intersections
|
||||
- Find the rotational points of symmetry not account for by reflections.
|
||||
- Look for any miracles (×) i.e. glide reflections that do not cross a mirror line.
|
||||
- If you found none of the above, it is just O
|
||||
#v(1fr)
|
||||
|
67
src/Advanced/Wallpaper/parts/03 problems.typ
Normal file
67
src/Advanced/Wallpaper/parts/03 problems.typ
Normal file
@ -0,0 +1,67 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
#let pat(img, sol) = {
|
||||
problem()
|
||||
|
||||
table(
|
||||
stroke: none,
|
||||
align: center,
|
||||
columns: (1fr, 1fr),
|
||||
rows: 80mm,
|
||||
image(img, height: 100%), image(img, height: 100%),
|
||||
)
|
||||
|
||||
solution(sol)
|
||||
v(1fr)
|
||||
}
|
||||
|
||||
= A few problems
|
||||
|
||||
Find the signatures of the following patterns. Mark all mirror nodes, rotation centers, and glide reflections. \
|
||||
Each pattern is provided twice for convenience.
|
||||
|
||||
|
||||
#pat("../res/wolfram/cm.svg", [#sym.times#sym.convolve])
|
||||
#pat("../res/wolfram/cmm.svg", [#sym.diamond.stroked`2`#sym.convolve`22`])
|
||||
#pagebreak()
|
||||
|
||||
|
||||
|
||||
|
||||
#pat("../res/wolfram/p3.svg", [#sym.diamond.stroked`333`])
|
||||
#pat("../res/wolfram/p3m1.svg", [#sym.convolve`333`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p4.svg", [#sym.diamond.stroked`442`])
|
||||
#pat("../res/wolfram/p4m.svg", [#sym.convolve`442`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p6.svg", [#sym.diamond.stroked`632`])
|
||||
#pat("../res/wolfram/p6m.svg", [#sym.convolve`632`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p4g.svg", [#sym.diamond.stroked`4`#sym.convolve`2`])
|
||||
#pat("../res/wolfram/p31m.svg", [#sym.diamond.stroked`3`#sym.convolve`3`])
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Draw a wallpaper with the signature #sym.convolve`442` \
|
||||
#note[Make sure there are no other symmetries!]
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
|
||||
#pat("../res/wolfram/pgg.svg", [#sym.diamond.stroked`22`#sym.times])
|
||||
#pat("../res/wolfram/pmg.svg", [#sym.diamond.stroked`22`#sym.convolve])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/pg.svg", [#sym.times#sym.times])
|
||||
#pat("../res/wolfram/pm.svg", [#sym.convolve#sym.convolve])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p2.svg", [#sym.diamond.stroked`2222`])
|
||||
#pat("../res/wolfram/pmm.svg", [#sym.convolve`2222`])
|
||||
#pagebreak()
|
||||
|
||||
#pat("../res/wolfram/p1.svg", [#sym.circle.small])
|
100
src/Advanced/Wallpaper/parts/04 theorem.typ
Normal file
100
src/Advanced/Wallpaper/parts/04 theorem.typ
Normal file
@ -0,0 +1,100 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
= The Signature-Cost Theorem
|
||||
|
||||
#definition()
|
||||
First, we'll associate a _cost_ to each type of symmetry in orbifold notation:
|
||||
|
||||
#v(4mm)
|
||||
#align(
|
||||
center,
|
||||
table(
|
||||
stroke: (1pt, 1pt),
|
||||
align: center,
|
||||
columns: (auto, auto, auto, auto),
|
||||
[*Symbol*], [*Cost*], [*Symbol*], [*Cost*],
|
||||
[#sym.circle.small], [2], [#sym.times or #sym.convolve], [1],
|
||||
[#sym.diamond.stroked.small`2`], [1/2], [#sym.convolve`2`], [1/4],
|
||||
[#sym.diamond.stroked.small`3`], [2/3], [#sym.convolve`3`], [1/3],
|
||||
[#sym.dots], [#sym.dots], [#sym.dots], [#sym.dots],
|
||||
[#sym.diamond.stroked.small`n`],
|
||||
[$(n-1) / n$],
|
||||
[#sym.convolve`n`],
|
||||
[$(n-1) / (2n)$],
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
We then calculate the total "cost" of a signature by adding up the costs of each component.
|
||||
|
||||
For example, a pattern with signature #sym.convolve`333` has cost 2:
|
||||
|
||||
#v(2mm)
|
||||
|
||||
$
|
||||
2 / 3 + 2 / 3 + 2 / 3 = 2
|
||||
$
|
||||
|
||||
#problem()
|
||||
Calculate the costs of the following signatures:
|
||||
- #sym.diamond.stroked.small`3`#sym.convolve`3`
|
||||
- #sym.convolve#sym.convolve
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2`:
|
||||
|
||||
#solution([
|
||||
- #sym.diamond.stroked.small`3`#sym.convolve`3`: $2/3 + 1 + 1/3 = 2$
|
||||
- #sym.convolve#sym.convolve: $1 + 1 = 2$
|
||||
- #sym.diamond.stroked.small`4`#sym.convolve`2`: $3/4 + 1 + 1/4 = 2$
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#theorem(name: "Signature Cost Theorem")
|
||||
The signatures of planar wallpaper patterns are exactly those with total cost 2. \
|
||||
#note([We will not prove this theorem today, accept it without proof.])
|
||||
|
||||
#problem()
|
||||
Consider the 4 symmetries (translation, reflection, rotation, and glide reflection). \
|
||||
Which preserve orientation? Which reverse orientation?
|
||||
|
||||
#solution([
|
||||
- Reflections and glide reflections reverse orientation (directions of spirals).
|
||||
- Translation and rotation preserve orientation.
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
#pagebreak()
|
||||
|
||||
#problem()
|
||||
Use the signature-cost theorem to find all the signatures consisting of only #sym.circle.small or rotational symmetries.
|
||||
|
||||
#solution([
|
||||
#sym.diamond.stroked.small`632`, #sym.diamond.stroked.small`442`, #sym.diamond.stroked.small`333`, #sym.diamond.stroked.small`2222`, #sym.circle.small
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find all the signatures consisting of only mirror symmetries.
|
||||
|
||||
#solution([
|
||||
#sym.convolve`632`, #sym.convolve`442`, #sym.convolve`333`, #sym.convolve`2222`, #sym.convolve#sym.convolve
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
|
||||
#problem()
|
||||
Find all the remaining signatures. \
|
||||
Each must be a mix of of mirror symmetries, rotational symmetries, or glide reflections. \
|
||||
#hint([They are all shown in the problems section.])
|
||||
|
||||
#solution([
|
||||
#sym.diamond.stroked.small`3`#sym.convolve`3`, #sym.diamond.stroked.small`4`#sym.convolve`2`,
|
||||
#sym.diamond.stroked.small`22`#sym.times, #sym.diamond.stroked.small`22`#sym.convolve,
|
||||
#sym.times#sym.times, #sym.times#sym.convolve
|
||||
])
|
||||
|
||||
#v(1fr)
|
@ -1,6 +1,7 @@
|
||||
[default]
|
||||
extend-words."LSAT" = "LSAT"
|
||||
extend-words."ket" = "ket"
|
||||
extend-words."typ" = "typ"
|
||||
|
||||
extend-ignore-re = [
|
||||
# spell:disable-line
|
||||
|
Reference in New Issue
Block a user