Added geometric optimization
This commit is contained in:
parent
449bd2e24e
commit
f65ad3de88
251
Advanced/Geometric Optimization/main.tex
Executable file
251
Advanced/Geometric Optimization/main.tex
Executable file
@ -0,0 +1,251 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{\smallurl{}}
|
||||
\title{Geometric Optimization}
|
||||
\subtitle{
|
||||
Prepared by Mark on \today \par
|
||||
Based on a handout by Nakul \& Andreas
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\section{Optimization}
|
||||
|
||||
\problem{}<simtri>
|
||||
Let $A$ and $B$ be two points on the same side of a given line $\ell$. \par
|
||||
Find a point $C$ on $\ell$ so that $|AC| + |BC|$ is minimized.
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 2]
|
||||
\draw[-] (-2,0) -- (3,0);
|
||||
|
||||
\fill[fill=black] (-0.6, 1) circle (0.03) node[below] {$A$};
|
||||
\fill[fill=black] (1.6, 0.75) circle (0.03) node[below] {$B$};
|
||||
\fill[fill=black] (0.5, 0) circle (0.03) node[below] {$C$};
|
||||
|
||||
\draw[-] (-0.6, 1) -- (0.5, 0) -- (1.6, 0.75);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
An \textit{ellipse} with foci $A$, $B$ and radius $r$ is the set of all points $C$ where $|AB| + |BC| = r$.
|
||||
|
||||
\problem{}
|
||||
Consider a reflective ellipse with foci $A$ and $B$. \par
|
||||
Find all points $X$ on the ellipse where $A$ can aim a laser at so that the beam reaches $B$. \par
|
||||
\hint{use \ref{simtri}}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
dot/.style={draw, fill, circle, inner sep=1.2},
|
||||
scale = 0.75
|
||||
]
|
||||
\def\a{5} % large half axis
|
||||
\def\b{3} % small half axis
|
||||
|
||||
\draw (0,0) ellipse ({\a} and {\b});
|
||||
|
||||
% Foci
|
||||
\node[dot,label={above right:$A$}] (A) at ({-sqrt(\a*\a-\b*\b)},0) {};
|
||||
\node[dot,label={above:$B$}] (B) at ({+sqrt(\a*\a-\b*\b)},0) {};
|
||||
|
||||
% Node on ellipse
|
||||
\def\angle{150}
|
||||
\node[dot,label={\angle:$X$}] (X) at (\angle:{\a} and {\b}) {};
|
||||
\draw (A) -- (X) -- (B);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $C$ be a point in the interior of a given angle. Find points A and B on the sides
|
||||
of the angle such that the perimeter of the triangle ABC is a minimum.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
In a convex quadrilateral ABCD, find the point T for which the sum of the distances to
|
||||
the vertices is minimal.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
A road needs to be constructed from town A to town B, crossing a river, over which a
|
||||
perpendicular bridge is to be constructed.
|
||||
Where should the bridge be placed to minimize $|AR_1| + |R_1R_2| + |R_2B|$?
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 1.5]
|
||||
\draw[-] (-5, 0.5) -- (5, 0.5);
|
||||
\draw[-] (-5, -0.5) -- (5, -0.5);
|
||||
|
||||
\fill[fill=black] (-3, -3) circle (0.06) node[below] {$A$};
|
||||
\fill[fill=black] (0.5, -0.5) circle (0.06) node[below] {$R_1$};
|
||||
\fill[fill=black] (0.5, 0.5) circle (0.06) node[below right] {$R_2$};
|
||||
\fill[fill=black] (3, 1) circle (0.06) node[below] {$B$};
|
||||
|
||||
\draw[-] (-3, -3) -- (0.5, -0.5) -- (0.5, 0.5) -- (3,1);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<equi>
|
||||
Consider an equilateral triangle triangle with vertices labeled $A$, $B$, and $C$. \par
|
||||
Let P be a point inside this triangle. Place $D$, $E$, and $F$ so that $PD$, $PE$, and $PF$
|
||||
are the perpendiculars from $P$ to the sides of the triangle. \par
|
||||
|
||||
Find all points $P$ where $|PD| + |PE| + |PF|$ is minimized.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 4]
|
||||
\draw[-]
|
||||
(-1, 0)
|
||||
-- (1, 0)
|
||||
-- (0, 1.47)
|
||||
-- cycle
|
||||
;
|
||||
|
||||
\fill[fill=black] (0, 1.47) circle (0.03) node[above] (A) {$A$};
|
||||
\fill[fill=black] (1, 0) circle (0.03) node[below right] {$B$};
|
||||
\fill[fill=black] (-1, 0) circle (0.03) node[below left] {$C$};
|
||||
|
||||
\fill[fill=black] (0.39, 0.9) circle (0.03) node[above right] {$D$};
|
||||
\fill[fill=black] (-0.3, 0) circle (0.03) node[below right] {$E$};
|
||||
\fill[fill=black] (-0.555, 0.65) circle (0.03) node[above left] {$F$};
|
||||
|
||||
\fill[fill=black] (-0.3, 0.5) circle (0.03) node[below right] {$P$};
|
||||
|
||||
|
||||
\draw[-] (-0.3, 0.5) -- (0.39, 0.9);
|
||||
\draw[-] (-0.3, 0.5) -- (-0.3, 0);
|
||||
\draw[-] (-0.3, 0.5) -- (-0.555, 0.65);
|
||||
|
||||
\draw[-] (-0.2, 0) -- (-0.2, 0.1) -- (-0.3, 0.1);
|
||||
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<equi2>
|
||||
With the same setup as \ref{equi}, find all points $P$ where $|PA| + |PB| + |PC|$ is minimized.
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Solve \ref{equi2} for a triangle that isn't equilateral.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Draw a circle, then draw two distinct tangents $\ell_1$ and $\ell_2$ that intersect at point $A$. \par
|
||||
Let $P$ be a point on the circle between the tangents, and $BC$ be the tangent at that point.
|
||||
Describe how $P$ shoud be selected in order to minimize the perimeter of triangle $ABC$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 2]
|
||||
\draw (0, 0) circle (1);
|
||||
|
||||
\fill[fill=black] (-4, -1) circle (0.04) node[below] (A) {$A$};
|
||||
\draw[-] (-4, -1) -- (2, -1);
|
||||
\draw[-] (-4, -1) -- (1.2, 1.78);
|
||||
\draw[-] (-1, -1) -- (-1, 0.6);
|
||||
|
||||
\fill[fill=black] (-1, 0.6) circle (0.04) node[above left] {$B$};
|
||||
\fill[fill=black] (-1, 0) circle (0.04) node[right] {$P$};
|
||||
\fill[fill=black] (-1, -1) circle (0.04) node[below] {$C$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vspace{2cm}
|
||||
|
||||
|
||||
\problem{}
|
||||
Now, assume that $\ell_1$ and $\ell_2$ intersect at $A$, and pick a point $P$ between them. \par
|
||||
Find $BC$ through $P$ so that the perimeter of $ABC$ is minimized.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\section{Bonus Problems}
|
||||
|
||||
\problem{}
|
||||
Given a cube $A_1B_1C_1D_1A_2B_2C_2D_2$ with side length $l$, \par
|
||||
find the angle and distance between lines $A_1B_2$ and $A_2C_1$.
|
||||
|
||||
\begin{solution}
|
||||
Triangle $A_1B_2D_2$ is equilateral. \par
|
||||
Also, point $A_2$ is equidistant from each of this triangle's vertices. \par
|
||||
Therefore, its projection onto the plane formed by $A_1$, $B_2$, and $D_2$ is the center of the triangle. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Similarly, $C_1$ is mapped to the center of $A_1B_2D_2$. \par
|
||||
Therefore, lines $A_1B_2$ and $A_2C_1$ are perpendicular and the distance between them is
|
||||
equal to the distance from the center of triangle $A_1B_2D_2$ to its side.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Since all the sides of this triangle have length $l\sqrt{2}$, the distance in question is $\frac{a}{\sqrt{6}}$.
|
||||
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Consider a cube $A_1B_1C_1D_1A_2B_2C_2D_2$, and let $K$, $L$, \par
|
||||
and $M$ be midpoints of the edges $A_2D_2$, $A_1B_1$, and $C_1C_2$. \par
|
||||
Show that the triangle formed by $KLM$ is equilateral, and that its center is the center of the cube.
|
||||
|
||||
\begin{solution}
|
||||
Let $O$ be the center of the cube. Then, $|OK| = |C_1D_2|$, $|2OL| = |D_2A_1|$, and $2|OM| = |A_1C_1|$. \par
|
||||
Since triangle $C_1D_2A_1$is equilateral, triangle $KLM$ is equilateral and has $O$ as its center.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Consider all $n$-gons with a certain perimeter.
|
||||
Show that the $n$-gon with maximal area has equal sides
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Consider all $n$-gons with a certain perimeter.
|
||||
Show that the $n$-gon with maximal area has equal angles
|
||||
\vfill
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user