Added initial parts of group theory handout
This commit is contained in:
parent
513bac6f54
commit
f0b0a200bf
24
Advanced/Group Theory/main.tex
Executable file
24
Advanced/Group Theory/main.tex
Executable file
@ -0,0 +1,24 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
<Advanced 2>
|
||||
<Fall 2022>
|
||||
{Group Theory}
|
||||
{
|
||||
Based on a lesson by Janet Chen \\
|
||||
Prepared by Mark on \today
|
||||
}
|
||||
|
||||
|
||||
\input{parts/00 review}
|
||||
\input{parts/01 groups}
|
||||
|
||||
\end{document}
|
121
Advanced/Group Theory/parts/00 review.tex
Executable file
121
Advanced/Group Theory/parts/00 review.tex
Executable file
@ -0,0 +1,121 @@
|
||||
\section{Review: Functions}
|
||||
|
||||
\definition{}
|
||||
A \textit{function} or \textit{map} $f$ from a set $A$ (the \textit{domain}, $\mathcal{D}$) to a set $B$ (the \textit{range}, $\mathcal{R}$) is a rule that assigns each element of $A$ to an element of $B$. We write this as $f: A \to B$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Consider a function $f: \mathbb{Z} \to \mathbb{Z}$. If $f(1) = 2$, we say that 2 is the \textit{image} of 1 and 1 is the \textit{preimage} of 2 under $f$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
An element in a function's domain must have exactly one image. However, an element in the range may have more than one preimage.
|
||||
|
||||
\problem{}
|
||||
Consider the function $f: \mathbb{R} \to \mathbb{R}^+$ defined by $f(x) = x^2$
|
||||
\begin{itemize}
|
||||
\item[-] What is the image of 2?
|
||||
\item[-] What are the preimages of 9?
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{}
|
||||
We say a map is \textit{one-to-one} if $a \neq b \implies f(a) \neq f(b)$. In other words, this means that each element of the range has at most one preimage.
|
||||
|
||||
\definition{}
|
||||
We say a map $f$ is \textit{onto} if, for every $y \in \mathcal{R}$, there exists an $x \in \mathcal{D}$ so that $f(x) = y$. In other words, this means that every $y$ in the range has a preimage in the domain.
|
||||
|
||||
\problem{}
|
||||
Find a function that is...
|
||||
\begin{enumerate}
|
||||
\item[-] not one-to-one, not onto
|
||||
\item[-] one-to-one and not onto
|
||||
\item[-] not one-to-one, but onto
|
||||
\item[-] both one-to-one and onto
|
||||
\end{enumerate}
|
||||
We say a function that is both one-to-one and onto is \textit{bijective}.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
Let $f: A \to B$ and $g: B \to C$. We can define a new function $(g \circ f): A \to C$, where $(g \circ f)(a) = g(f(a))$. This is called \textit{composition}.
|
||||
|
||||
\problem{}
|
||||
Suppose $f: A \to B$ and $g: B \to C$ are both one-to-one. Must $(g \circ f)$ be one-to-one? Provide a proof or a counterexample.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Suppose $f: A \to B$ and $g: B \to C$ are both onto. Must $(g \circ f)$ be onto? Provide a proof or a counterexample.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\section{Review: Modular Arithmetic}
|
||||
|
||||
\definition{}
|
||||
$\mathbb{Z} / n$ is the set of integers mod $n$. For example, $Z/5 = \{0, 1, 2, 3, 4\}$. \\
|
||||
You should all be familiar with modular arithmetic.
|
||||
|
||||
\definition{}
|
||||
The inverse of an element $a$ in $\mathbb{Z}/n$ is a $b$ so that $a \times b \equiv 1$. \\
|
||||
|
||||
Not all elements of $\mathbb{Z}/n$ have an inverse. Those that do are called \textit{units}. \\
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The set of all units in $\mathbb{Z}/n$ is written $(\mathbb{Z}/n)^\times$ \\
|
||||
Read this as \say{$\mathbb{Z}$ mod $n$ cross}
|
||||
|
||||
\problem{}
|
||||
What are the elements of $(\mathbb{Z}/5)^\times$?
|
||||
|
||||
\begin{solution}
|
||||
$\{1, 2, 3, 4\}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<modtables>
|
||||
Create an addition table for $\mathbb{Z}/4$ and a multiplication table for $(\mathbb{Z}/5)^\times$
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & ? & ? & ? & ? \\
|
||||
1 & ? & ? & ? & ? \\
|
||||
2 & ? & ? & ? & ? \\
|
||||
3 & ? & ? & ? & ? \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & 0 & 1 & 2 & 3 \\
|
||||
1 & 1 & 2 & 3 & 0 \\
|
||||
2 & 2 & 3 & 0 & 1 \\
|
||||
3 & 3 & 0 & 1 & 2 \\
|
||||
\end{tabular}
|
||||
\hspace{1cm}
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\vfill
|
||||
\pagebreak
|
95
Advanced/Group Theory/parts/01 groups.tex
Executable file
95
Advanced/Group Theory/parts/01 groups.tex
Executable file
@ -0,0 +1,95 @@
|
||||
\section{Groups}
|
||||
|
||||
\definition{}
|
||||
A \textit{group} $(G, \ast)$ consists of a set $G$ and an operator $\ast$. \\
|
||||
A group must have the following properties: \\
|
||||
|
||||
\begin{enumerate}
|
||||
\item $G$ is closed under $\ast$. In other words, $a, b \in G \implies a \ast b \in G$.
|
||||
\item $\ast$ is associative: $a \ast b = b \ast a$
|
||||
\item There is an \textit{identity} $\overline{0} \in G$, so that $a \ast \overline{0} = a$ for all $a \in G$.
|
||||
\item For any $a \in G$, there exists a $b \in G$ so that $a \ast b = \overline{0}$. $b$ is called the \textit{inverse} of $a$. \\
|
||||
This element is written as $-a$ if our operator is addition and $a^{-1}$ otherwise.
|
||||
\end{enumerate}
|
||||
|
||||
Any pair $(G, \ast)$ that satisfies these properties is a group.
|
||||
|
||||
\definition{}
|
||||
Note that our definition of a group does \textbf{not} state that $a \ast b = b \ast a$. \\
|
||||
Many interesting groups do not have this property. \\
|
||||
Those that do are called \textit{abelian} groups.
|
||||
|
||||
\problem{}
|
||||
Is $(\mathbb{Z}/5, +)$ a group? \\
|
||||
Is $(\mathbb{Z}/5, -)$ a group? \\
|
||||
\hint{$+$ and $-$ refer to our usual definition of modular arithmetic.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
$(\mathbb{R}, \times)$ is not a group. \\
|
||||
Make it one by modifying $\mathbb{R}$. \\
|
||||
|
||||
\begin{solution}
|
||||
$(\mathbb{R}, \times)$ is not a group because $0$ has no inverse. \\
|
||||
The solution is simple: remove the problem.
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
$(\mathbb{R} - \{0\}, \times)$ is a group.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Can you construct a group that contains a single element?
|
||||
|
||||
\begin{solution}
|
||||
Let $(G, \circledcirc)$ be our group, where $G = \{\star\}$ and $\circledcirc$ is defined by the identity $\star \circledcirc \star = \star$
|
||||
|
||||
Verifying that the trivial group is a group is trivial.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
Recall your tables from \ref{modtables}: \\
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{c | c c c c}
|
||||
+ & 0 & 1 & 2 & 3 \\
|
||||
\hline
|
||||
0 & 0 & 1 & 2 & 3 \\
|
||||
1 & 1 & 2 & 3 & 0 \\
|
||||
2 & 2 & 3 & 0 & 1 \\
|
||||
3 & 3 & 0 & 1 & 2 \\
|
||||
\end{tabular}
|
||||
\hspace{1cm}
|
||||
\begin{tabular}{c | c c c c}
|
||||
\times & 1 & 2 & 3 & 4 \\
|
||||
\hline
|
||||
1 & 1 & 2 & 4 & 3 \\
|
||||
2 & 2 & 4 & 3 & 1 \\
|
||||
3 & 4 & 3 & 1 & 2 \\
|
||||
4 & 3 & 1 & 2 & 4 \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
Convince yourself that $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times )$ are the same group. \\
|
||||
We say that two such groups are \textit{isomorphic}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Intuitively, this means that $(\mathbb{Z}/4, +)$ and $( (\mathbb{Z}/5)^\times, \times )$ have the same algebraic structure. We can translate statements about addition in $\mathbb{Z}/4$ into statements about multiplication in $(\mathbb{Z}/5)^\times$ \\
|
||||
|
||||
\problem{}
|
||||
Show that a group has exactly one identity element.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that each element in a group has exactly one inverse.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
Loading…
x
Reference in New Issue
Block a user