Started basic LA handout

This commit is contained in:
Mark 2023-04-05 15:31:36 -07:00
parent 00a42b7765
commit eaa5978dc9

View File

@ -0,0 +1,153 @@
% use [nosolutions] flag to hide solutions.
% use [solutions] flag to show solutions.
\documentclass[
solutions,
nowarning,
%singlenumbering
]{../../resources/ormc_handout}
%\usepackage{lua-visual-debug}
\usepackage{tikz-3dplot}
\begin{document}
\maketitle
<Advanced 2>
<Spring 2023>
{Linear Algebra 101}
{
Prepared by Mark on \today \\
}
\section{Notation and Terminology}
\definition{}
\begin{itemize}
\item $\mathbb{R}$ is the set of all real numbers.
\item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive.
\item $\mathbb{R}^+_0$ is the set of positive real numbers and zero
\end{itemize}
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. I will use the definitions above.
\definition{}
Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\
For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\
\vspace{4mm}
You can think of this as placing the two sets \say{perpendicular} to one another. In the image below, each dot corresponds to an element of $A \times B$:
\begin{center}
\begin{tikzpicture}[
scale=1,
bullet/.style={circle,inner sep=1.5pt,fill}
]
\draw[->] (-0.2,0) -- (4,0) node[right]{$A$};
\draw[->] (0,-0.2) -- (0,3) node[above]{$B$};
\draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$};
\draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$};
\draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$};
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$};
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$};
\node[bullet] at (1, 1){};
\node[bullet] at (2, 1) {};
\node[bullet] at (3, 1) {};
\node[bullet] at (1, 2) {};
\node[bullet] at (2, 2) {};
\node[bullet] at (3, 2) {};
\end{tikzpicture}
\end{center}
\problem{}
Let $A = \{0, 1\} \times \{0, 1\}$. \\
Let $B = \{ a, b\}$ \\
What is $A \times B$?
\vfill
\problem{}
What is $\mathbb{R} \times \mathbb{R}$? \\
\hint{Use the \say{perpendicular} analogy}
\vfill
\pagebreak
\definition{}
$\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\
In english, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\
\vspace{4mm}
Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}}
Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4 a_5)$, where $a_n \in \mathbb{R}$. \\
$\mathbb{R}^1$ and $\mathbb{R}$ are identical.
\vspace{4mm}
Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\
$\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try.
\problem{}
Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\
What is $\mathbb{R}^2 \times \mathbb{R}$?
\vfill
\section{Vectors}
\definition{}
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
As you already know, we have a few operations on vectors:
\begin{itemize}
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
\end{itemize}
\problem{}
Compute the following, or explain why you can't:
\begin{itemize}
\item $[1, 2, 3] + [1, 3, 4]$
\item $4 \times [5, 2, 4]$
\item $a + b$, where $a \in \mathbb{R}
^5$ and $b \in \mathbb{R}^7$
\end{itemize}
\vfill
\pagebreak
\definition{}
We can also define the \textit{dot product} of two vectors. \\
The dot product maps a pair of elements from $\mathbb{R}^n$ to $\mathbb{R}$:
$$
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
$$
\problem{}
% pictures
% addition, scalar multiplication
% dot product
% transformations
% linearity
% matrices
% norms
\end{document}