Started basic LA handout
This commit is contained in:
parent
00a42b7765
commit
eaa5978dc9
153
Advanced/Linear Algebra 101/main.tex
Executable file
153
Advanced/Linear Algebra 101/main.tex
Executable file
@ -0,0 +1,153 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
nowarning,
|
||||
%singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
%\usepackage{lua-visual-debug}
|
||||
|
||||
\usepackage{tikz-3dplot}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
<Advanced 2>
|
||||
<Spring 2023>
|
||||
{Linear Algebra 101}
|
||||
{
|
||||
Prepared by Mark on \today \\
|
||||
}
|
||||
|
||||
|
||||
\section{Notation and Terminology}
|
||||
|
||||
\definition{}
|
||||
\begin{itemize}
|
||||
\item $\mathbb{R}$ is the set of all real numbers.
|
||||
\item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive.
|
||||
\item $\mathbb{R}^+_0$ is the set of positive real numbers and zero
|
||||
\end{itemize}
|
||||
|
||||
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. I will use the definitions above.
|
||||
|
||||
|
||||
\definition{}
|
||||
Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\
|
||||
For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
You can think of this as placing the two sets \say{perpendicular} to one another. In the image below, each dot corresponds to an element of $A \times B$:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
scale=1,
|
||||
bullet/.style={circle,inner sep=1.5pt,fill}
|
||||
]
|
||||
\draw[->] (-0.2,0) -- (4,0) node[right]{$A$};
|
||||
\draw[->] (0,-0.2) -- (0,3) node[above]{$B$};
|
||||
|
||||
\draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$};
|
||||
\draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$};
|
||||
\draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$};
|
||||
|
||||
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$};
|
||||
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$};
|
||||
|
||||
\node[bullet] at (1, 1){};
|
||||
\node[bullet] at (2, 1) {};
|
||||
\node[bullet] at (3, 1) {};
|
||||
\node[bullet] at (1, 2) {};
|
||||
\node[bullet] at (2, 2) {};
|
||||
\node[bullet] at (3, 2) {};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
Let $A = \{0, 1\} \times \{0, 1\}$. \\
|
||||
Let $B = \{ a, b\}$ \\
|
||||
What is $A \times B$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is $\mathbb{R} \times \mathbb{R}$? \\
|
||||
\hint{Use the \say{perpendicular} analogy}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
$\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\
|
||||
In english, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}}
|
||||
Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4 a_5)$, where $a_n \in \mathbb{R}$. \\
|
||||
|
||||
$\mathbb{R}^1$ and $\mathbb{R}$ are identical.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\
|
||||
$\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try.
|
||||
|
||||
\problem{}
|
||||
Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\
|
||||
What is $\mathbb{R}^2 \times \mathbb{R}$?
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\section{Vectors}
|
||||
|
||||
\definition{}
|
||||
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
|
||||
As you already know, we have a few operations on vectors:
|
||||
\begin{itemize}
|
||||
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
|
||||
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\problem{}
|
||||
Compute the following, or explain why you can't:
|
||||
\begin{itemize}
|
||||
\item $[1, 2, 3] + [1, 3, 4]$
|
||||
\item $4 \times [5, 2, 4]$
|
||||
\item $a + b$, where $a \in \mathbb{R}
|
||||
^5$ and $b \in \mathbb{R}^7$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
We can also define the \textit{dot product} of two vectors. \\
|
||||
The dot product maps a pair of elements from $\mathbb{R}^n$ to $\mathbb{R}$:
|
||||
|
||||
$$
|
||||
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
|
||||
$$
|
||||
|
||||
\problem{}
|
||||
|
||||
|
||||
|
||||
% pictures
|
||||
% addition, scalar multiplication
|
||||
% dot product
|
||||
% transformations
|
||||
% linearity
|
||||
% matrices
|
||||
% norms
|
||||
|
||||
|
||||
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user