Finished knot composition
BIN
Advanced/Knots/images/noninvertible a.png
Normal file
After Width: | Height: | Size: 238 KiB |
BIN
Advanced/Knots/images/noninvertible b.png
Normal file
After Width: | Height: | Size: 218 KiB |
BIN
Advanced/Knots/images/noninvertible.png
Normal file
After Width: | Height: | Size: 268 KiB |
BIN
Advanced/Knots/images/orientation a.png
Normal file
After Width: | Height: | Size: 125 KiB |
BIN
Advanced/Knots/images/orientation b.png
Normal file
After Width: | Height: | Size: 162 KiB |
BIN
Advanced/Knots/images/orientation c.png
Normal file
After Width: | Height: | Size: 146 KiB |
BIN
Advanced/Knots/knot table/8_17.png
Normal file
After Width: | Height: | Size: 319 KiB |
@ -5,37 +5,15 @@
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
\usepackage{ifthen}
|
||||
\usetikzlibrary{
|
||||
knots,
|
||||
hobby,
|
||||
decorations.pathreplacing,
|
||||
shapes.geometric,
|
||||
calc
|
||||
}
|
||||
|
||||
\newif{\ifShowKnots}
|
||||
\ShowKnotsfalse
|
||||
%\ShowKnotstrue
|
||||
|
||||
% Knot debugging.
|
||||
% Set to true to show knot info
|
||||
% Set to true to show knot measurements.
|
||||
% Only used in tikzset.tex
|
||||
\newif{\ifDebugKnot}
|
||||
\DebugKnottrue
|
||||
%\DebugKnottrue
|
||||
\DebugKnotfalse
|
||||
|
||||
\ifDebugKnot
|
||||
\tikzset{
|
||||
knot diagram/draft mode = crossings,
|
||||
knot diagram/only when rendering/.style = {
|
||||
show curve endpoints,
|
||||
%show curve controls
|
||||
}
|
||||
}
|
||||
\fi
|
||||
\input{tikzset.tex}
|
||||
|
||||
|
||||
% From "Why knot" by
|
||||
% Problems from "Why knot"
|
||||
%
|
||||
% Create largest crossing number with cord
|
||||
% Human knot number: how many humans do you need to make the knot?
|
||||
@ -44,45 +22,10 @@
|
||||
%
|
||||
% Figure-8 knot: mirror without letting go
|
||||
|
||||
|
||||
\tikzset{
|
||||
knot diagram/every strand/.append style={
|
||||
line width = 0.8mm,
|
||||
black
|
||||
},
|
||||
show curve controls/.style={
|
||||
postaction=decorate,
|
||||
decoration={
|
||||
show path construction,
|
||||
curveto code={
|
||||
\draw[blue, dashed]
|
||||
(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta)
|
||||
node [at end, draw, solid, red, inner sep=2pt]{}
|
||||
;
|
||||
|
||||
\draw[blue, dashed]
|
||||
(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast)
|
||||
node [at start, draw, solid, red, inner sep=2pt]{}
|
||||
node [at end, fill, red, ellipse, inner sep=2pt]{}
|
||||
;
|
||||
}
|
||||
}
|
||||
},
|
||||
show curve endpoints/.style={
|
||||
postaction=decorate,
|
||||
decoration={
|
||||
show path construction,
|
||||
curveto code={
|
||||
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
%\usepackage{lua-visual-debug}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
<Advanced 2>
|
||||
<Spring 2023>
|
||||
@ -91,251 +34,9 @@
|
||||
Prepared by Mark on \today
|
||||
}
|
||||
|
||||
\section{Introduction}
|
||||
|
||||
\definition{}
|
||||
To form a \textit{knot}, take a string, tie a knot, then join the ends. \par
|
||||
You can also think of a knot as a path in three-dimensional space that doesn't intersect itself:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
\begin{knot}
|
||||
\strand
|
||||
(1,2) .. controls +(-45:1) and +(1,0) ..
|
||||
(0, 0) .. controls +(-1,0) and +(-90 -45:1) ..
|
||||
(-1,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
|
||||
% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that.
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(1,2) .. controls +(-45:1) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) ..
|
||||
(-1,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
|
||||
If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par
|
||||
If two knots are isomorphic, they are essentially the same knot.
|
||||
|
||||
\definition{}
|
||||
The simplest knot is the \textit{unknot}. It is show below on the left. \par
|
||||
The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||
\begin{knot}
|
||||
\strand
|
||||
(0,2) .. controls +(1.5,0) and +(1.5,0) ..
|
||||
(0, 0) .. controls +(-1.5,0) and +(-1.5,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Below are the only four distinct knots with only one crossing. \par
|
||||
Show that no nontrivial knot can have has fewer than three crossings. \par
|
||||
\hint{There are 4 such knots. What are they?}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
Draw all four. Each is isomorphic to the unknot.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that this is the unknot. \par
|
||||
A wire or an extension cord may help.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.35\linewidth]{images/big unknot.png}
|
||||
\end{center}
|
||||
|
||||
|
||||
\definition{}
|
||||
As we said before, there are many ways to draw the same knot. \par
|
||||
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot.
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/figure eight.png}
|
||||
\end{center}
|
||||
\vspace{2mm}
|
||||
|
||||
\problem{}
|
||||
Convince yourself that these are equivalent.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\section{Knot Composition}
|
||||
|
||||
Say we have two knots $A$ and $B$.
|
||||
The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends:
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.15\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/composition a.png}
|
||||
$A$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.13\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/composition b.png}
|
||||
$B$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/composition c.png}
|
||||
$A \boxplus B$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
We must be careful to avoid new crossings when composing knots:
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.45\linewidth]{images/composition d.png}
|
||||
\end{center}
|
||||
\vspace{2mm}
|
||||
|
||||
We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par
|
||||
We say a knot is \textit{prime} otherwise.
|
||||
|
||||
\problem{}
|
||||
For any knot $K$, what is $K \boxplus \text{unknot}$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Use a pencil or a cord to compose the figure-eight knot with itself.
|
||||
|
||||
\vfill
|
||||
|
||||
\vfill
|
||||
\pagebreak{}
|
||||
|
||||
\problem{}
|
||||
The following knots are composite. What are their prime components? \par
|
||||
Try to make them with a cord! \par
|
||||
\hint{Use the table at the back of this handout to decompose the second knot.}
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\includegraphics[height=30mm]{images/decompose a.png}
|
||||
\hfill
|
||||
\includegraphics[height=30mm]{images/decompose b.png}
|
||||
\hfill~\par
|
||||
\vspace{4mm}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
The first is easy, it's the trefoil composed with itself. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The second is knot $5_2$ composed with itself. \par
|
||||
Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par
|
||||
The figure-eight knot is NOT a part of this composition. Look closely at its crossings.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
\input{parts/0 intro.tex}
|
||||
\input{parts/1 composition.tex}
|
||||
|
||||
\input{parts/table}
|
||||
|
||||
|
163
Advanced/Knots/parts/0 intro.tex
Normal file
@ -0,0 +1,163 @@
|
||||
\section{Introduction}
|
||||
|
||||
\definition{}
|
||||
To form a \textit{knot}, take a string, tie a knot, then join the ends. \par
|
||||
You can also think of a knot as a path in three-dimensional space that doesn't intersect itself:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
\begin{knot}
|
||||
\strand
|
||||
(1,2) .. controls +(-45:1) and +(1,0) ..
|
||||
(0, 0) .. controls +(-1,0) and +(-90 -45:1) ..
|
||||
(-1,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
|
||||
% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that.
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(1,2) .. controls +(-45:1) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) ..
|
||||
(-1,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
|
||||
If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par
|
||||
If two knots are isomorphic, they are essentially the same knot.
|
||||
|
||||
\definition{}
|
||||
The simplest knot is the \textit{unknot}. It is show below on the left. \par
|
||||
The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
||||
|
||||
\begin{center}
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||
\begin{knot}
|
||||
\strand
|
||||
(0,2) .. controls +(1.5,0) and +(1.5,0) ..
|
||||
(0, 0) .. controls +(-1.5,0) and +(-1.5,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||
|
||||
\clip (-2,-1.7) rectangle + (4, 4);
|
||||
|
||||
\begin{knot}[
|
||||
consider self intersections=true,
|
||||
flip crossing = 2,
|
||||
]
|
||||
\strand
|
||||
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||
(0,2);
|
||||
\end{knot}
|
||||
\coordinate (p) at (current bounding box.center);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Below are the only four distinct knots with only one crossing. \par
|
||||
Show that no nontrivial knot can have has fewer than three crossings. \par
|
||||
\hint{There are 4 such knots. What are they?}
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
Draw all four. Each is isomorphic to the unknot.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that this is the unknot. \par
|
||||
A wire or an extension cord may help.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[width=0.35\linewidth]{images/big unknot.png}
|
||||
\end{center}
|
||||
|
||||
|
||||
\definition{}
|
||||
As we said before, there are many ways to draw the same knot. \par
|
||||
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot.
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/figure eight.png}
|
||||
\end{center}
|
||||
\vspace{2mm}
|
||||
|
||||
\problem{}
|
||||
Convince yourself that these are equivalent.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
133
Advanced/Knots/parts/1 composition.tex
Normal file
@ -0,0 +1,133 @@
|
||||
\section{Knot Composition}
|
||||
|
||||
Say we have two knots $A$ and $B$.
|
||||
The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends:
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.15\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/composition a.png}
|
||||
$A$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.13\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/composition b.png}
|
||||
$B$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.3\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/composition c.png}
|
||||
$A \boxplus B$
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
We must be careful to avoid new crossings when composing knots:
|
||||
|
||||
\vspace{2mm}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.45\linewidth]{images/composition d.png}
|
||||
\end{center}
|
||||
\vspace{2mm}
|
||||
|
||||
We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par
|
||||
We say a knot is \textit{prime} otherwise.
|
||||
|
||||
\problem{}
|
||||
For any knot $K$, what is $K \boxplus \text{unknot}$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Use a pencil or a cord to compose the figure-eight knot with itself.
|
||||
|
||||
\vfill
|
||||
|
||||
\vfill
|
||||
\pagebreak{}
|
||||
|
||||
\problem{}
|
||||
The following knots are composite. What are their prime components? \par
|
||||
Try to make them with a cord! \par
|
||||
\hint{Use the table at the back of this handout to decompose the second knot.}
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\includegraphics[height=30mm]{images/decompose a.png}
|
||||
\hfill
|
||||
\includegraphics[height=30mm]{images/decompose b.png}
|
||||
\hfill~\par
|
||||
\vspace{4mm}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
The first is easy, it's the trefoil composed with itself. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The second is knot $5_2$ composed with itself. \par
|
||||
Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par
|
||||
The figure-eight knot is NOT a part of this composition. Look closely at its crossings.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
When we compose two knots, we may get different results. To fully understand this fact, we need to define knot \textit{orientation}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
An \textit{orientated knot} is created by defining a \say{direction of travel.} \par
|
||||
There are two distinct ways to compose a pair of oriented knots:
|
||||
|
||||
\begin{center}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.25\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/orientation b.png}
|
||||
Matching orientation
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}[t]{0.25\textwidth}
|
||||
\begin{center}
|
||||
\includegraphics[width=\linewidth]{images/orientation c.png}
|
||||
Inverse orientation
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill~
|
||||
\end{center}
|
||||
|
||||
In this example, both compositions happen to give the same result. This is because the trefoil knot is \textit{invertible}: its direction can be reversed by deforming it. This is not true in general, as you will soon see.
|
||||
|
||||
\problem{}
|
||||
Invert a directed trefoil.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
The smallest non-invertible knot is $8_{17}$, shown below. \par
|
||||
Compose $8_{17}$ with itself to obtain two different knots.
|
||||
|
||||
\begin{center}
|
||||
\includegraphics[height=30mm]{knot table/8_17.png} \par
|
||||
\vspace{2mm}
|
||||
{\large Knot $8_{17}$}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.8\linewidth]{images/noninvertible.png}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
51
Advanced/Knots/tikzset.tex
Normal file
@ -0,0 +1,51 @@
|
||||
\usetikzlibrary{
|
||||
knots,
|
||||
hobby,
|
||||
decorations.pathreplacing,
|
||||
shapes.geometric,
|
||||
calc
|
||||
}
|
||||
|
||||
\ifDebugKnot
|
||||
\tikzset{
|
||||
knot diagram/draft mode = crossings,
|
||||
knot diagram/only when rendering/.style = {
|
||||
show curve endpoints,
|
||||
%show curve controls
|
||||
}
|
||||
}
|
||||
\fi
|
||||
|
||||
\tikzset{
|
||||
knot diagram/every strand/.append style={
|
||||
line width = 0.8mm,
|
||||
black
|
||||
},
|
||||
show curve controls/.style={
|
||||
postaction=decorate,
|
||||
decoration={
|
||||
show path construction,
|
||||
curveto code={
|
||||
\draw[blue, dashed]
|
||||
(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta)
|
||||
node [at end, draw, solid, red, inner sep=2pt]{}
|
||||
;
|
||||
|
||||
\draw[blue, dashed]
|
||||
(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast)
|
||||
node [at start, draw, solid, red, inner sep=2pt]{}
|
||||
node [at end, fill, red, ellipse, inner sep=2pt]{}
|
||||
;
|
||||
}
|
||||
}
|
||||
},
|
||||
show curve endpoints/.style={
|
||||
postaction=decorate,
|
||||
decoration={
|
||||
show path construction,
|
||||
curveto code={
|
||||
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|