More secratary edits
This commit is contained in:
parent
97600fbb84
commit
e894f937aa
@ -79,7 +79,7 @@ We have no absolute metric by which to judge each candidate.
|
|||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
Thus, all $I_x$ defined above are independent: \par
|
Thus, all $I_x$ defined above are independent:
|
||||||
the outcome of any $I_a$ does not influence the probabilities of any other $I_b$.
|
the outcome of any $I_a$ does not influence the probabilities of any other $I_b$.
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
@ -93,3 +93,47 @@ the results of past $I_x$ cannot possibly provide information about future $I_x$
|
|||||||
Given the above realizations, we are left with only one kind of strategy: \par
|
Given the above realizations, we are left with only one kind of strategy: \par
|
||||||
We blindly reject the first $k$ applicants, and select the first \say{best-seen} applicant we encounter afterwards.
|
We blindly reject the first $k$ applicants, and select the first \say{best-seen} applicant we encounter afterwards.
|
||||||
All we need to do now is pick the optimal $k$.
|
All we need to do now is pick the optimal $k$.
|
||||||
|
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Consider the secretary problem with a given $n$. \par
|
||||||
|
What is the probability distribution of each of $I_1, I_2, ..., I_n$? \par
|
||||||
|
\note{That is, what are $\mathcal{P}(I_x = \texttt{0})$ and $\mathcal{P}(I_x = \texttt{1})$ for each $x$?}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
What is the probability that the $x^\text{th}$ applicant is \textit{not} the best-seen applicant? \par
|
||||||
|
In other words, what is the probability we reject the $x^\text{th}$ candidate? \par
|
||||||
|
\note{Assuming that $x > k$. Otherwise, the probability of rejection is 1!}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}<phisubn>
|
||||||
|
Again, consider the secretary problem with a fixed $n$. \par
|
||||||
|
If we reject the first $k$ applicants and hire the first \say{best-yet} applicant we encounter, \par
|
||||||
|
what is the probability that we select the best candidate? \par
|
||||||
|
Call this function $\phi_n(k)$.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find $
|
||||||
|
\underset{x \in \{0, ..., n\}}{\text{max}}
|
||||||
|
\Bigl(\phi_n(k)\Bigr)
|
||||||
|
$ for all $n$ in $\{1, 2, 3, 4, 5\}$.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find $
|
||||||
|
\underset{x \in \mathbb{R}}{\text{max}}
|
||||||
|
\Bigl(~
|
||||||
|
\underset{n \rightarrow \infty}{\text{lim}}
|
||||||
|
\phi_n(k)
|
||||||
|
~\Bigr)
|
||||||
|
$
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
Loading…
x
Reference in New Issue
Block a user