Convert "Odd Dice" to typst
This commit is contained in:
parent
28dd6c67bb
commit
dfddfb5137
@ -1,132 +0,0 @@
|
||||
\documentclass[
|
||||
nosolutions,
|
||||
hidewarning,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
|
||||
\usepackage{tikz}
|
||||
\usetikzlibrary{arrows.meta}
|
||||
\usetikzlibrary{shapes.geometric}
|
||||
|
||||
% We put nodes in a separate layer, so we can
|
||||
% slightly overlap with paths for a perfect fit
|
||||
\pgfdeclarelayer{nodes}
|
||||
\pgfdeclarelayer{path}
|
||||
\pgfsetlayers{main,nodes}
|
||||
|
||||
% Layer settings
|
||||
\tikzset{
|
||||
% Layer hack, lets us write
|
||||
% later = * in scopes.
|
||||
layer/.style = {
|
||||
execute at begin scope={\pgfonlayer{#1}},
|
||||
execute at end scope={\endpgfonlayer}
|
||||
},
|
||||
%
|
||||
% Arrowhead tweak
|
||||
>={Latex[ width=2mm, length=2mm ]},
|
||||
%
|
||||
% Nodes
|
||||
main/.style = {
|
||||
draw,
|
||||
circle,
|
||||
fill = white,
|
||||
line width = 0.35mm
|
||||
}
|
||||
}
|
||||
|
||||
\title{Warm Up: Odd Dice}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
|
||||
We say a set of dice $\{A, B, C\}$ is \textit{nontransitive}
|
||||
if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$.
|
||||
In other words, we get a counterintuitive \say{rock - paper - scissors} effect.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Create a set of nontransitive six-sided dice. \par
|
||||
\hint{All sides should be numbered with positive integers less than 10.}
|
||||
|
||||
\begin{solution}
|
||||
One possible set can be numbered as follows:
|
||||
\begin{itemize}
|
||||
\item Die $A$: $2, 2, 4, 4, 9, 9$
|
||||
\item Die $B$: $1, 1, 6, 6, 8, 8$
|
||||
\item Die $C$: $3, 3, 5, 5, 7, 7$
|
||||
\end{itemize}
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Another solution is below:
|
||||
\begin{itemize}
|
||||
\item Die $A$: $3, 3, 3, 3, 3, 6$
|
||||
\item Die $B$: $2, 2, 2, 5, 5, 5$
|
||||
\item Die $C$: $1, 4, 4, 4, 4, 4$
|
||||
\end{itemize}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Now, consider the set of six-sided dice below:
|
||||
\begin{itemize}
|
||||
\item Die $A$: $4, 4, 4, 4, 4, 9$
|
||||
\item Die $B$: $3, 3, 3, 3, 8, 8$
|
||||
\item Die $C$: $2, 2, 2, 7, 7, 7$
|
||||
\item Die $D$: $1, 1, 6, 6, 6, 6$
|
||||
\item Die $E$: $0, 5, 5, 5, 5, 5$
|
||||
\end{itemize}
|
||||
On average, which die beats each of the others? Draw a graph. \par
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 0.5]
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[main] (a) at (-2, 0.2) {$a$};
|
||||
\node[main] (b) at (0, 2) {$b$};
|
||||
\node[main] (c) at (2, 0.2) {$c$};
|
||||
\node[main] (d) at (1, -2) {$d$};
|
||||
\node[main] (e) at (-1, -2) {$e$};
|
||||
\end{scope}
|
||||
|
||||
\draw[->]
|
||||
(a) edge (b)
|
||||
(b) edge (c)
|
||||
(c) edge (d)
|
||||
(d) edge (e)
|
||||
(e) edge (a)
|
||||
|
||||
(a) edge (c)
|
||||
(b) edge (d)
|
||||
(c) edge (e)
|
||||
(d) edge (a)
|
||||
(e) edge (b)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
Now, say we roll each die twice. What happens to the graph above?
|
||||
|
||||
\begin{solution}
|
||||
The direction of each edge is reversed!
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\end{document}
|
117
src/Warm-Ups/Odd Dice/main.typ
Normal file
117
src/Warm-Ups/Odd Dice/main.typ
Normal file
@ -0,0 +1,117 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Odd Dice],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
We say a set of dice ${A, B, C}$ is _nontransitive_
|
||||
if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$.
|
||||
In other words, we get a counterintuitive "rock - paper - scissors" effect.
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Create a set of nontransitive six-sided dice. \
|
||||
#hint([All sides should be numbered with positive integers less than 10.])
|
||||
|
||||
#solution([
|
||||
One possible set can be numbered as follows:
|
||||
- Die $A$: $2, 2, 4, 4, 9, 9$
|
||||
- Die $B$: $1, 1, 6, 6, 8, 8$
|
||||
- Die $C$: $3, 3, 5, 5, 7, 7$
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Another solution is below:
|
||||
- Die $A$: $3, 3, 3, 3, 3, 6$
|
||||
- Die $B$: $2, 2, 2, 5, 5, 5$
|
||||
- Die $C$: $1, 4, 4, 4, 4, 4$
|
||||
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Now, consider the set of six-sided dice below:
|
||||
- Die $A$: $4, 4, 4, 4, 4, 9$
|
||||
- Die $B$: $3, 3, 3, 3, 8, 8$
|
||||
- Die $C$: $2, 2, 2, 7, 7, 7$
|
||||
- Die $D$: $1, 1, 6, 6, 6, 6$
|
||||
- Die $E$: $0, 5, 5, 5, 5, 5$
|
||||
On average, which die beats each of the others? Draw a diagram.
|
||||
|
||||
#solution(
|
||||
align(
|
||||
center,
|
||||
cetz.canvas({
|
||||
import cetz.draw: *
|
||||
|
||||
let s = 0.8 // Scale
|
||||
let t = 13pt * s // text size
|
||||
let radius = 0.3 * s
|
||||
|
||||
// Points
|
||||
let a = (-2 * s, 0.2 * s)
|
||||
let b = (0 * s, 2 * s)
|
||||
let c = (2 * s, 0.2 * s)
|
||||
let d = (1.2 * s, -2.1 * s)
|
||||
let e = (-1.2 * s, -2.1 * s)
|
||||
|
||||
set-style(
|
||||
stroke: (thickness: 0.6mm * s),
|
||||
mark: (
|
||||
end: (
|
||||
symbol: ">",
|
||||
fill: black,
|
||||
offset: radius + (0.025 * s),
|
||||
width: 1.2mm * s,
|
||||
length: 1.2mm * s,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
line(a, b)
|
||||
line(b, c)
|
||||
line(c, d)
|
||||
line(d, e)
|
||||
line(e, a)
|
||||
line(a, c)
|
||||
line(b, d)
|
||||
line(c, e)
|
||||
line(d, a)
|
||||
line(e, b)
|
||||
|
||||
circle(a, radius: radius, fill: oblue, stroke: none)
|
||||
circle(b, radius: radius, fill: oblue, stroke: none)
|
||||
circle(c, radius: radius, fill: oblue, stroke: none)
|
||||
circle(d, radius: radius, fill: oblue, stroke: none)
|
||||
circle(e, radius: radius, fill: oblue, stroke: none)
|
||||
|
||||
content(a, text(fill: white, size: t, [*A*]))
|
||||
content(b, text(fill: white, size: t, [*B*]))
|
||||
content(c, text(fill: white, size: t, [*C*]))
|
||||
content(d, text(fill: white, size: t, [*D*]))
|
||||
content(e, text(fill: white, size: t, [*E*]))
|
||||
}),
|
||||
),
|
||||
)
|
||||
|
||||
#v(1fr)
|
||||
|
||||
#problem()
|
||||
Now, say we roll each die twice. What happens to the graph from the previous problem?
|
||||
|
||||
#solution([
|
||||
The direction of each edge is reversed!
|
||||
])
|
||||
|
||||
#v(1fr)
|
Loading…
x
Reference in New Issue
Block a user