Convert "Travellers" to typst
This commit is contained in:
parent
473e2875fa
commit
28dd6c67bb
@ -1,30 +0,0 @@
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering,
|
||||
nopagenumber
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
\title{Warm-Up: Travellers}
|
||||
\uptitler{\smallurl{}}
|
||||
\subtitle{Prepared by Mark on \today}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\problem{}
|
||||
Four travellers are on a plane, each moving along a straight line at an arbitrary constant speed. \par
|
||||
No two of their paths are parallel, and no three intersect at the same point. \par
|
||||
We know that traveller A has met travelers B, C, and D, \par
|
||||
and that traveller B has met C and D (and A). Show that C and D must also have met. \par
|
||||
|
||||
\begin{solution}
|
||||
When a body travels at a constant speed, its graph with respect to time is a straight line. \par
|
||||
So, we add time axis in the third dimension, perpendicular to our plane. \par
|
||||
Naturally, the projection of each of these onto the plane corresponds to a road.
|
||||
|
||||
Now, note that two intersecting lines define a plane and use the conditions in the problem to show that no two lines are parallel.
|
||||
\end{solution}
|
||||
|
||||
\end{document}
|
26
src/Warm-Ups/Travellers/main.typ
Normal file
26
src/Warm-Ups/Travellers/main.typ
Normal file
@ -0,0 +1,26 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
|
||||
#show: doc => handout(
|
||||
doc,
|
||||
quarter: link(
|
||||
"https://betalupi.com/handouts",
|
||||
"betalupi.com/handouts",
|
||||
),
|
||||
|
||||
title: [Warm-Up: Travellers],
|
||||
by: "Mark",
|
||||
)
|
||||
|
||||
#problem()
|
||||
Four travellers are on a plane, each moving along a straight line at an arbitrary constant speed. \
|
||||
No two of their paths are parallel, and no three intersect at the same point. \
|
||||
We know that traveller A has met travelers B, C, and D, \
|
||||
and that traveller B has met C and D (and A). Show that C and D must also have met.
|
||||
|
||||
#solution([
|
||||
When a body travels at a constant speed, its graph with respect to time is a straight line. \
|
||||
So, we add time axis in the third dimension, perpendicular to our plane. \
|
||||
Naturally, the projection of each of these onto the plane corresponds to a road.
|
||||
|
||||
Now, note that two intersecting lines define a plane and use the conditions in the problem to show that no two lines are parallel.
|
||||
])
|
Loading…
x
Reference in New Issue
Block a user