Added knot draft
BIN
Advanced/Knots/images/big unknot.png
Normal file
After Width: | Height: | Size: 144 KiB |
BIN
Advanced/Knots/images/composition a.png
Normal file
After Width: | Height: | Size: 26 KiB |
BIN
Advanced/Knots/images/composition b.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
Advanced/Knots/images/composition c.png
Normal file
After Width: | Height: | Size: 51 KiB |
BIN
Advanced/Knots/images/composition d.png
Normal file
After Width: | Height: | Size: 90 KiB |
BIN
Advanced/Knots/images/decompose a.png
Normal file
After Width: | Height: | Size: 52 KiB |
BIN
Advanced/Knots/images/decompose b.png
Normal file
After Width: | Height: | Size: 143 KiB |
BIN
Advanced/Knots/images/figure eight.png
Normal file
After Width: | Height: | Size: 130 KiB |
BIN
Advanced/Knots/images/one crossing.png
Normal file
After Width: | Height: | Size: 72 KiB |
BIN
Advanced/Knots/knot table/3_1.png
Normal file
After Width: | Height: | Size: 67 KiB |
BIN
Advanced/Knots/knot table/4_1.png
Normal file
After Width: | Height: | Size: 135 KiB |
BIN
Advanced/Knots/knot table/5_1.png
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
Advanced/Knots/knot table/5_2.png
Normal file
After Width: | Height: | Size: 95 KiB |
BIN
Advanced/Knots/knot table/6_1.png
Normal file
After Width: | Height: | Size: 143 KiB |
BIN
Advanced/Knots/knot table/6_2.png
Normal file
After Width: | Height: | Size: 90 KiB |
BIN
Advanced/Knots/knot table/6_3.png
Normal file
After Width: | Height: | Size: 83 KiB |
BIN
Advanced/Knots/knot table/7_1.png
Normal file
After Width: | Height: | Size: 79 KiB |
BIN
Advanced/Knots/knot table/7_2.png
Normal file
After Width: | Height: | Size: 95 KiB |
BIN
Advanced/Knots/knot table/7_3.png
Normal file
After Width: | Height: | Size: 94 KiB |
BIN
Advanced/Knots/knot table/7_4.png
Normal file
After Width: | Height: | Size: 102 KiB |
BIN
Advanced/Knots/knot table/7_5.png
Normal file
After Width: | Height: | Size: 90 KiB |
BIN
Advanced/Knots/knot table/7_6.png
Normal file
After Width: | Height: | Size: 90 KiB |
BIN
Advanced/Knots/knot table/7_7.png
Normal file
After Width: | Height: | Size: 82 KiB |
BIN
Advanced/Knots/knot table/8_1.png
Normal file
After Width: | Height: | Size: 94 KiB |
343
Advanced/Knots/main.tex
Executable file
@ -0,0 +1,343 @@
|
|||||||
|
% use [nosolutions] flag to hide solutions.
|
||||||
|
% use [solutions] flag to show solutions.
|
||||||
|
\documentclass[
|
||||||
|
solutions,
|
||||||
|
singlenumbering
|
||||||
|
]{../../resources/ormc_handout}
|
||||||
|
|
||||||
|
\usepackage{ifthen}
|
||||||
|
\usetikzlibrary{
|
||||||
|
knots,
|
||||||
|
hobby,
|
||||||
|
decorations.pathreplacing,
|
||||||
|
shapes.geometric,
|
||||||
|
calc
|
||||||
|
}
|
||||||
|
|
||||||
|
\newif{\ifShowKnots}
|
||||||
|
\ShowKnotsfalse
|
||||||
|
%\ShowKnotstrue
|
||||||
|
|
||||||
|
% Knot debugging.
|
||||||
|
% Set to true to show knot info
|
||||||
|
\newif{\ifDebugKnot}
|
||||||
|
\DebugKnottrue
|
||||||
|
\DebugKnotfalse
|
||||||
|
|
||||||
|
\ifDebugKnot
|
||||||
|
\tikzset{
|
||||||
|
knot diagram/draft mode = crossings,
|
||||||
|
knot diagram/only when rendering/.style = {
|
||||||
|
show curve endpoints,
|
||||||
|
%show curve controls
|
||||||
|
}
|
||||||
|
}
|
||||||
|
\fi
|
||||||
|
|
||||||
|
|
||||||
|
% From "Why knot" by
|
||||||
|
%
|
||||||
|
% Create largest crossing number with cord
|
||||||
|
% Human knot number: how many humans do you need to make the knot?
|
||||||
|
% Human knot number for trefoil composition?
|
||||||
|
% (looks like a wrap around center string)
|
||||||
|
%
|
||||||
|
% Figure-8 knot: mirror without letting go
|
||||||
|
|
||||||
|
|
||||||
|
\tikzset{
|
||||||
|
knot diagram/every strand/.append style={
|
||||||
|
line width = 0.8mm,
|
||||||
|
black
|
||||||
|
},
|
||||||
|
show curve controls/.style={
|
||||||
|
postaction=decorate,
|
||||||
|
decoration={
|
||||||
|
show path construction,
|
||||||
|
curveto code={
|
||||||
|
\draw[blue, dashed]
|
||||||
|
(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta)
|
||||||
|
node [at end, draw, solid, red, inner sep=2pt]{}
|
||||||
|
;
|
||||||
|
|
||||||
|
\draw[blue, dashed]
|
||||||
|
(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast)
|
||||||
|
node [at start, draw, solid, red, inner sep=2pt]{}
|
||||||
|
node [at end, fill, red, ellipse, inner sep=2pt]{}
|
||||||
|
;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
show curve endpoints/.style={
|
||||||
|
postaction=decorate,
|
||||||
|
decoration={
|
||||||
|
show path construction,
|
||||||
|
curveto code={
|
||||||
|
\node [fill, blue, ellipse, inner sep=2pt] at (\tikzinputsegmentlast) {};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
%\usepackage{lua-visual-debug}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
<Advanced 2>
|
||||||
|
<Spring 2023>
|
||||||
|
{Knots}
|
||||||
|
{
|
||||||
|
Prepared by Mark on \today
|
||||||
|
}
|
||||||
|
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
To form a \textit{knot}, take a string, tie a knot, then join the ends. \par
|
||||||
|
You can also think of a knot as a path in three-dimensional space that doesn't intersect itself:
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{minipage}[t]{0.3\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||||
|
\begin{knot}
|
||||||
|
\strand
|
||||||
|
(1,2) .. controls +(-45:1) and +(1,0) ..
|
||||||
|
(0, 0) .. controls +(-1,0) and +(-90 -45:1) ..
|
||||||
|
(-1,2);
|
||||||
|
\end{knot}
|
||||||
|
|
||||||
|
\coordinate (p) at (current bounding box.center);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.3\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||||
|
|
||||||
|
% Knot is stupid and includes invisible handles in the tikz bounding box. This line crops the image to fix that.
|
||||||
|
\clip (-2,-1.7) rectangle + (4, 4);
|
||||||
|
|
||||||
|
\begin{knot}[
|
||||||
|
consider self intersections=true,
|
||||||
|
flip crossing = 2,
|
||||||
|
]
|
||||||
|
\strand
|
||||||
|
(1,2) .. controls +(-45:1) and +(120:-2.2) ..
|
||||||
|
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||||
|
(-30:2) .. controls +(60:-2.2) and +(-90 -45:1) ..
|
||||||
|
(-1,2);
|
||||||
|
\end{knot}
|
||||||
|
|
||||||
|
\coordinate (p) at (current bounding box.center);
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.3\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[scale = 0.8, baseline=(p)]
|
||||||
|
|
||||||
|
\clip (-2,-1.7) rectangle + (4, 4);
|
||||||
|
|
||||||
|
|
||||||
|
\begin{knot}[
|
||||||
|
consider self intersections=true,
|
||||||
|
flip crossing = 2,
|
||||||
|
]
|
||||||
|
\strand
|
||||||
|
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||||
|
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||||
|
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||||
|
(0,2);
|
||||||
|
\end{knot}
|
||||||
|
|
||||||
|
\coordinate (p) at (current bounding box.center);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
If two knots may be deformed into each other without cutting, we say they are \textit{isomorphic}. \par
|
||||||
|
If two knots are isomorphic, they are essentially the same knot.
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
The simplest knot is the \textit{unknot}. It is show below on the left. \par
|
||||||
|
The simplest nontrivial knot is the \textit{trefoil} knot, shown to the right.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{minipage}[t]{0.48\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||||
|
\begin{knot}
|
||||||
|
\strand
|
||||||
|
(0,2) .. controls +(1.5,0) and +(1.5,0) ..
|
||||||
|
(0, 0) .. controls +(-1.5,0) and +(-1.5,0) ..
|
||||||
|
(0,2);
|
||||||
|
\end{knot}
|
||||||
|
|
||||||
|
\coordinate (p) at (current bounding box.center);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.48\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[baseline=(p), scale = 0.8]
|
||||||
|
|
||||||
|
\clip (-2,-1.7) rectangle + (4, 4);
|
||||||
|
|
||||||
|
\begin{knot}[
|
||||||
|
consider self intersections=true,
|
||||||
|
flip crossing = 2,
|
||||||
|
]
|
||||||
|
\strand
|
||||||
|
(0,2) .. controls +(2.2,0) and +(120:-2.2) ..
|
||||||
|
(210:2) .. controls +(120:2.2) and +(60:2.2) ..
|
||||||
|
(-30:2) .. controls +(60:-2.2) and +(-2.2,0) ..
|
||||||
|
(0,2);
|
||||||
|
\end{knot}
|
||||||
|
\coordinate (p) at (current bounding box.center);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Below are the only four distinct knots with only one crossing. \par
|
||||||
|
Show that no nontrivial knot can have has fewer than three crossings. \par
|
||||||
|
\hint{There are 4 such knots. What are they?}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.8\linewidth]{images/one crossing.png}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
Draw all four. Each is isomorphic to the unknot.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that this is the unknot. \par
|
||||||
|
A wire or an extension cord may help.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.35\linewidth]{images/big unknot.png}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
As we said before, there are many ways to draw the same knot. \par
|
||||||
|
We call each drawing a \textit{projection}. Below are four projections of the \textit{figure-eight} knot.
|
||||||
|
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.8\linewidth]{images/figure eight.png}
|
||||||
|
\end{center}
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Convince yourself that these are equivalent.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\section{Knot Composition}
|
||||||
|
|
||||||
|
Say we have two knots $A$ and $B$.
|
||||||
|
The knot $A \boxplus B$ is created by cutting $A$ and $B$ and joining their ends:
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.15\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/composition a.png}
|
||||||
|
$A$
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.13\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/composition b.png}
|
||||||
|
$B$
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}[t]{0.3\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{images/composition c.png}
|
||||||
|
$A \boxplus B$
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill~
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
We must be careful to avoid new crossings when composing knots:
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=0.45\linewidth]{images/composition d.png}
|
||||||
|
\end{center}
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
We say a knot is \textit{composite} if it can be obtained by composing two other knots. \par
|
||||||
|
We say a knot is \textit{prime} otherwise.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
For any knot $K$, what is $K \boxplus \text{unknot}$?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Use a pencil or a cord to compose the figure-eight knot with itself.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak{}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
The following knots are composite. What are their prime components? \par
|
||||||
|
Try to make them with a cord! \par
|
||||||
|
\hint{Use the table at the back of this handout to decompose the second knot.}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\hfill
|
||||||
|
\includegraphics[height=30mm]{images/decompose a.png}
|
||||||
|
\hfill
|
||||||
|
\includegraphics[height=30mm]{images/decompose b.png}
|
||||||
|
\hfill~\par
|
||||||
|
\vspace{4mm}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
The first is easy, it's the trefoil composed with itself. \par
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
The second is knot $5_2$ composed with itself. \par
|
||||||
|
Note that the \say{three-crossing figure eight} is another projection of $5_2$. \par
|
||||||
|
The figure-eight knot is NOT a part of this composition. Look closely at its crossings.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\input{parts/table}
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
50
Advanced/Knots/parts/table.tex
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
\section{Table of Prime Knots}
|
||||||
|
This table contains the 15 smallest prime knots, ordered by crossing number. \par
|
||||||
|
Mirror images are not accounted for, even if the mirror image produces a nonisomorphic knot.
|
||||||
|
|
||||||
|
\vspace{5mm}
|
||||||
|
|
||||||
|
% Images are from the appendix of the Knot book.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
{
|
||||||
|
\def\w{25mm}
|
||||||
|
\foreach \l/\c/\r in {%
|
||||||
|
{3_1}/{4_1}/{5_1},%
|
||||||
|
{5_2}/{6_1}/{6_2},%
|
||||||
|
{6_3}/{7_1}/{7_2},%
|
||||||
|
{7_3}/{7_4}/{7_5},%
|
||||||
|
{7_6}/{7_7}/{8_1}%
|
||||||
|
}{
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}{\w}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{knot table/\l.png} \par
|
||||||
|
\vspace{2mm}
|
||||||
|
{\huge $\l$}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}{\w}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{knot table/\c.png} \par
|
||||||
|
\vspace{2mm}
|
||||||
|
{\huge $\c$}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}{\w}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=\linewidth]{knot table/\r.png} \par
|
||||||
|
\vspace{2mm}
|
||||||
|
{\huge $\r$}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill~\par
|
||||||
|
\vspace{4mm}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|