Edits
This commit is contained in:
parent
3a4e9615f8
commit
ba4f971110
@ -1,7 +1,7 @@
|
|||||||
% use [nosolutions] flag to hide solutions.
|
% use [nosolutions] flag to hide solutions.
|
||||||
% use [solutions] flag to show solutions.
|
% use [solutions] flag to show solutions.
|
||||||
\documentclass[
|
\documentclass[
|
||||||
solutions,
|
nosolutions,
|
||||||
singlenumbering
|
singlenumbering
|
||||||
]{../../resources/ormc_handout}
|
]{../../resources/ormc_handout}
|
||||||
\usepackage{../../resources/macros}
|
\usepackage{../../resources/macros}
|
||||||
@ -18,7 +18,7 @@
|
|||||||
\maketitle
|
\maketitle
|
||||||
|
|
||||||
|
|
||||||
|
\section{}
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
We say an integer $x$ is \textit{even} if $x = 2k$ for some $k \in \mathbb{Z}$.
|
||||||
@ -79,7 +79,7 @@
|
|||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Let $X = \{x \in \mathbb{Z} ~\bigl|~ n \geq 2 \}$. For $k \geq 2$, degine $X_k = \{kx ~\bigl|~ x \in X \}$. \par
|
Let $X = \{x \in \mathbb{Z} ~\bigl|~ x \geq 2 \}$. For $k \geq 2$, define $X_k = \{kx ~\bigl|~ x \in X \}$. \par
|
||||||
What is $X - (X_2 \cup X_3 \cup X_4 \cup ...)$? Prove your claim.
|
What is $X - (X_2 \cup X_3 \cup X_4 \cup ...)$? Prove your claim.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
@ -91,8 +91,6 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that there are infinitely may primes. \par
|
Show that there are infinitely may primes. \par
|
||||||
You may use the fact that every integer has a prime factorization.
|
You may use the fact that every integer has a prime factorization.
|
||||||
@ -185,12 +183,14 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\theorem{The Division Algorithm}<divalgo>
|
||||||
|
Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par
|
||||||
|
In other words, we can divide $a$ by $b$ to get $q$ remainder $r$.
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Let $x, y \in \mathbb{N}$ be natural numbers.
|
Let $x, y \in \mathbb{N}$ be natural numbers.
|
||||||
Consider the set $S = \{ax + by ~\bigl|~ a, b \in \mathbb{Z}, ax + by = 0\}$. \par
|
Consider the set $S = \{ax + by ~\bigl|~ a, b \in \mathbb{Z}, ax + by > 0\}$. \par
|
||||||
The well-ordering principle states that every nonempty subset of the natural numbers has a least element.
|
The well-ordering principle states that every nonempty subset of the natural numbers has a least element.
|
||||||
You many also need the division algorithm.
|
|
||||||
|
|
||||||
\vspace{4mm}
|
\vspace{4mm}
|
||||||
\begin{itemize}[itemsep=4mm]
|
\begin{itemize}[itemsep=4mm]
|
||||||
@ -252,7 +252,7 @@
|
|||||||
$$
|
$$
|
||||||
(a + b)^N = \sum_{k=0}^N \binom{N}{k}a^kb^{N-k}
|
(a + b)^N = \sum_{k=0}^N \binom{N}{k}a^kb^{N-k}
|
||||||
$$
|
$$
|
||||||
Now, show that this formula also works for $N = N + 1$.
|
Now, show that this formula also works for $N + 1$.
|
||||||
|
|
||||||
\item Conclude that this formula works for all $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}.
|
\item Conclude that this formula works for all $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
@ -284,4 +284,57 @@
|
|||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that there exist two positive irrational numbers $a$ and $b$ so that $a^b$ is rational.
|
||||||
|
|
||||||
|
% Solution: a = b = root 2, check all cases
|
||||||
|
% if irrational,a=rt, s = rt^rt, which is rational
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that the following holds for any planar graph:
|
||||||
|
$$
|
||||||
|
\text{vertices} - \text{edges} + \text{faces} = 2
|
||||||
|
$$
|
||||||
|
\hint{If you don't know what these words mean, ask an instructor.}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Consider a rectangular chocolate bar of arbitrary size. \par
|
||||||
|
What is the minimum number of breaks you need to make to
|
||||||
|
seperate all its pieces?
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
number of squares minus one, simple proof by induction.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Four travellers are on a plane, each moving along a straight line at an arbitrary constant speed. \par
|
||||||
|
No two of their paths are parallel, and no three intersect at the same point. \par
|
||||||
|
We know that traveller A has met traveler B, C, and D, and that B has met C and D (and A). \par
|
||||||
|
Show that C and D must also have met.
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
When a body travels at a constant speed, its graph with respect to time is a straight line. \par
|
||||||
|
So, we add time axis in the third dimension, perpendicular to our plane. \par
|
||||||
|
Naturally, the projection of each of these onto the plane corresponds to a road.
|
||||||
|
|
||||||
|
Now, note that two intersecting lines define a plane and use the conditions in the problem to show that no two lines are parallel.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Say we have an $n$-gon with non-intersecting edges. \par
|
||||||
|
What is the size of the smallet set of vertices that can \say{see} every point inside the polygon?
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
\end{document}
|
\end{document}
|
Loading…
x
Reference in New Issue
Block a user