Added if_solutions
methods
Reviewed-on: #5 Co-authored-by: Mark <mark@betalupi.com> Co-committed-by: Mark <mark@betalupi.com>
This commit is contained in:
parent
ede934369b
commit
b9751385d1
@ -137,7 +137,11 @@
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#let notsolution(content) = {
|
#let if_solutions(content) = {
|
||||||
|
if show_solutions { content }
|
||||||
|
}
|
||||||
|
|
||||||
|
#let if_no_solutions(content) = {
|
||||||
if not show_solutions { content }
|
if not show_solutions { content }
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -126,7 +126,7 @@ Fill the following tropical addition and multiplication tables
|
|||||||
|
|
||||||
#let col = 10mm
|
#let col = 10mm
|
||||||
|
|
||||||
#notsolution(
|
#if_no_solutions(
|
||||||
table(
|
table(
|
||||||
columns: (1fr, 1fr),
|
columns: (1fr, 1fr),
|
||||||
align: center,
|
align: center,
|
||||||
|
@ -63,7 +63,7 @@ where all exponents represent repeated tropical multiplication.
|
|||||||
Draw a graph of the tropical polynomial $f(x) = x^2 #tp 1x #tp 4$. \
|
Draw a graph of the tropical polynomial $f(x) = x^2 #tp 1x #tp 4$. \
|
||||||
#hint([$1x$ is not equal to $x$.])
|
#hint([$1x$ is not equal to $x$.])
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
$f(x) = min(2x , 1+x, 4)$, which looks like:
|
$f(x) = min(2x , 1+x, 4)$, which looks like:
|
||||||
@ -132,7 +132,7 @@ How can we use the graph to determine these roots?
|
|||||||
Graph $f(x) = -2x^2 #tp x #tp 8$. \
|
Graph $f(x) = -2x^2 #tp x #tp 8$. \
|
||||||
#hint([Use half scale. 1 box = 2 units.])
|
#hint([Use half scale. 1 box = 2 units.])
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
#graphgrid({
|
#graphgrid({
|
||||||
@ -210,7 +210,7 @@ and always produces $7$ for sufficiently large inputs.
|
|||||||
#problem()
|
#problem()
|
||||||
Graph $f(x) = 1x^2 #tp 3x #tp 5$.
|
Graph $f(x) = 1x^2 #tp 3x #tp 5$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
The graphs of all three terms intersect at the same point:
|
The graphs of all three terms intersect at the same point:
|
||||||
@ -261,7 +261,7 @@ How are the roots of $f$ related to its coefficients?
|
|||||||
#problem()
|
#problem()
|
||||||
Graph $f(x) = 2x^2 #tp 4x #tp 4$.
|
Graph $f(x) = 2x^2 #tp 4x #tp 4$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution(
|
#solution(
|
||||||
graphgrid({
|
graphgrid({
|
||||||
|
@ -10,7 +10,7 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 3x #tp 6$. \
|
|||||||
- use this graph to find the roots of $f$
|
- use this graph to find the roots of $f$
|
||||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
- Roots are 1, 2, and 3.
|
- Roots are 1, 2, and 3.
|
||||||
@ -48,7 +48,7 @@ Consider the polynomial $f(x) = x^3 #tp x^2 #tp 6x #tp 6$. \
|
|||||||
- use this graph to find the roots of $f$
|
- use this graph to find the roots of $f$
|
||||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
- Roots are 1, 2.5, and 2.5.
|
- Roots are 1, 2.5, and 2.5.
|
||||||
@ -82,7 +82,7 @@ Consider the polynomial $f(x) = x^3 #tp 6x^2 #tp 6x #tp 6$. \
|
|||||||
- use this graph to find the roots of $f$
|
- use this graph to find the roots of $f$
|
||||||
- write (and expand) a product of linear factors with the same graph as $f$.
|
- write (and expand) a product of linear factors with the same graph as $f$.
|
||||||
|
|
||||||
#notsolution(graphgrid(none))
|
#if_no_solutions(graphgrid(none))
|
||||||
|
|
||||||
#solution([
|
#solution([
|
||||||
- Roots are 2, 2, and 2.
|
- Roots are 2, 2, and 2.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user