Edits
This commit is contained in:
parent
6ea7e9df97
commit
b0c9969072
@ -60,7 +60,7 @@ The function of these is defined by \textit{truth tables}:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$A \land B$ is only true if both $A$ and $B$ are true. $A \lor B$ is only true if $A$ or $B$ (or both) are true. \par
|
||||
$A \land B$ is only true if both $A$ and $B$ are true. $A \lor B$ is true when $A$ or $B$ (or both) are true. \par
|
||||
$\lnot A$ is the opposite of $A$, which is why it looks like a \say{negative} sign. \par
|
||||
|
||||
\vspace{2mm}
|
||||
@ -92,6 +92,7 @@ Evaluate the following.
|
||||
|
||||
\problem{}
|
||||
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
||||
That is, show that these give the same result for the same $A$ and $B$.
|
||||
\hint{Use a truth table}
|
||||
|
||||
\vfill
|
||||
|
@ -9,7 +9,7 @@ A \textit{universe} is a set of meaningless objects. Here are a few examples:
|
||||
\end{itemize}
|
||||
|
||||
\definition{}
|
||||
A \textit{structure} consists of a universe $U$ and set of symbols. \par
|
||||
A \textit{structure} consists of a universe $U$ and a set of symbols. \par
|
||||
A structure's symbols give meaning to the objects in its universe.
|
||||
|
||||
\vspace{2mm}
|
||||
@ -35,8 +35,6 @@ The equality check $=$ is \textbf{not} a relation symbol. It is included in ever
|
||||
|
||||
|
||||
\example{}
|
||||
\def\structgeneric{\ensuremath{}}
|
||||
|
||||
The first structure we'll look at is the following:
|
||||
$$
|
||||
\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)
|
||||
|
@ -8,8 +8,8 @@ $\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statemen
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Let's look at $\forall$ first. Let $\varphi$ be a formula. \par
|
||||
Then, the formula $\forall x ~ \varphi$ says \say{$\varphi$ is true for all possible $x$.}
|
||||
Let's look at $\forall$ first. Let $\varphi(x)$ be a formula. \par
|
||||
Then, the formula $\forall x ~ \varphi(x)$ says \say{$\varphi$ is true for all possible $x$.}
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
@ -18,7 +18,7 @@ In english, this means \say{For any $x$, $x$ is bigger than zero,} or simply \sa
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
$\exists$ is very similar: the formula $\exists x ~ \varphi$ states that there is at least one $x$ that makes $\varphi$ true. \par
|
||||
$\exists$ is very similar: the formula $\exists x ~ \varphi(x)$ states that there is at least one $x$ that makes $\varphi$ true. \par
|
||||
For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our set}.
|
||||
|
||||
\vspace{4mm}
|
||||
@ -58,6 +58,12 @@ Which are true in $\mathbb{R}^+_0$? \par
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Does the order of $\forall$ and $\exists$ in a formula matter? \par
|
||||
What's the difference between $\exists x ~ \forall y ~ (x < y)$ and $\forall y ~ \exists x ~ (x < y)$? \par
|
||||
\hint{In $\mathbb{R}^+$, the first is false and the second is true. $\mathbb{R}^+$ does not contain zero.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
|
||||
@ -71,6 +77,7 @@ Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
@ -78,13 +85,10 @@ Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define $3$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||
%\problem{}
|
||||
%Define $2$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
%\vfill
|
||||
|
||||
\problem{}
|
||||
Let $\varphi(x)$ be a formula. \par
|
||||
@ -94,12 +98,5 @@ Define $(\forall x ~ \varphi(x))$ using logical symbols and $\exists$.
|
||||
$\Bigl(\forall x ~ \varphi(x)\Bigr)$ is true iff $\lnot \Bigl(\exists x ~ \lnot \varphi(x) \Bigr)$ is true.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Does the order of $\forall$ and $\exists$ in a formula matter? \par
|
||||
What's the difference between $\exists x ~ \forall y ~ (x < y)$ and $\forall y ~ \exists x ~ (x < y)$? \par
|
||||
\hint{In $\mathbb{R}^+$, the first is false and the second is true. $\mathbb{R}^+$ does not contain zero.}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -39,12 +39,12 @@ Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
|
||||
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
|
||||
Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
Loading…
x
Reference in New Issue
Block a user