Rewrote Vectors, added Norms
This commit is contained in:
parent
c18af4f5b8
commit
a74f04f27a
@ -2,7 +2,8 @@
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
nowarning,
|
||||
%singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
\usepackage{tikz}
|
||||
@ -32,16 +33,44 @@
|
||||
\input{parts/3 matrices}
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Bonus}
|
||||
\section{Norms}
|
||||
|
||||
\definition{}
|
||||
Show that $\mathbb{P}^n$ is a vector space.
|
||||
If $V$ is a vector space, a \textit{norm} in $V$ is a function $V \to \mathbb{R}^+$ that satisfies the following properties, \\
|
||||
Where $x, y \in V$ and $c \in F$:
|
||||
|
||||
\begin{itemize}
|
||||
\item Absolute Homogeneity: $||cx|| = |c|~||x||$
|
||||
\item Positive-Definite: $||x|| \geq 0$ with equality iff $x = 0$.
|
||||
\item Triangle Inequalty: $||x+y|| \leq ||x|| + ||y||$
|
||||
\end{itemize}
|
||||
|
||||
\problem{}
|
||||
Show that the \textit{euclidian norm} defined by $||~[a, b]~|| = \sqrt{a^2 + b^2}$ is a norm on $\mathbb{R}^2$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the set of all linear maps is a vector space.
|
||||
Show that in any vector space with an inner product, the \textit{induced norm} $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that every norm satisfies the reverse triangle inequality:
|
||||
|
||||
$$
|
||||
||x - y|| \geq |~||x|| - ||y||~|
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Prove the Cauchy-Schwartz inequality:
|
||||
|
||||
$$
|
||||
||\langle x, y \rangle|| = ||x||~||y||
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
\end{document}
|
@ -1,6 +1,6 @@
|
||||
\section{Spaces}
|
||||
|
||||
\definition{Vector Spaces}
|
||||
\definition{}
|
||||
A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
|
||||
\begin{itemize}[itemsep = 2mm]
|
||||
\item A set $V$, the elements of which are called \textit{vectors}
|
||||
@ -46,7 +46,7 @@ In both tables, $x, y, z \in V$ and $a, b\in \mathbb{F}$.
|
||||
\begin{center}
|
||||
\begin{tabular}{l | r@{=}l }
|
||||
\hline
|
||||
\multicolumn{3}{|c|}{Properties of vector multiplication} \\
|
||||
\multicolumn{3}{|c|}{Properties of scalar multiplication} \\
|
||||
\hline
|
||||
Closure & \multicolumn{2}{c}{$ax \in V$} \\
|
||||
Distributivity & $a(x+y)~$&$~ax+ay$ \\
|
||||
@ -59,39 +59,53 @@ In both tables, $x, y, z \in V$ and $a, b\in \mathbb{F}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$^*$ Remember that $a, b \in \mathbb{F}$ and $x \in V$. Thus, $(ab)$ is scalar multiplication and $(bx)$ is vector multiplication. \\
|
||||
Compatibility is \textit{not} associativity, it is \say{compatibility of vector and scalar multiplication.}
|
||||
$^*$ Remember that $a, b \in \mathbb{F}$ and $x \in V$. Thus, $(ab)$ is multiplication in $\mathbb{F}$ and $(bx)$ is scalar multiplication in $V$. Compatibility is \textit{not} associativity. \\
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
Likewise, the addition you see in the distributive property of multiplication is field addition, not vector addition.
|
||||
|
||||
\definition{}
|
||||
There is a good chance you are familiar with basic vector arithmetic. \\
|
||||
Here's a quick review:
|
||||
\vspace{6mm}
|
||||
|
||||
Usually, the word \textit{vector} refers to an element of $\mathbb{R}^n$. As you might expect $\mathbb{R}^n$ is a vector space over the field $\mathbb{R}$ under our usual vector operations.
|
||||
|
||||
Here's a quick review of these operations:
|
||||
\begin{itemize}
|
||||
\item Scalar multiplication is done elementwise: $3 \times [a, b, c] = [3a, 3b, 3c]$.
|
||||
\item Vector addition is similar: $[a, b, c] + [1, 2, 3] = [a+1,~b+2,~c+3]$.
|
||||
\item Vector addition is not valid for vectors of different sizes.
|
||||
\end{itemize}
|
||||
|
||||
\problem{}
|
||||
Verify that $\mathbb{R}^n$ is a vector space over $\mathbb{R}$ under these operations.
|
||||
|
||||
\definition{}
|
||||
We usually use the \textit{dot product} as our vector product. It is defined as follows. \\
|
||||
Given two vectors $a, b \in \mathbb{R}^n$, the dot product $a \cdot b$ is $\sum_1^n a_ib_i$.
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
||||
|
||||
We can also define an \textit{inner product} or \textit{vector product} that takes two elements of $V$ and produces another. \\
|
||||
|
||||
When we work in $\mathbb{R}^n$, we usually use the dot product as our vector product. It is defined as follows: \\
|
||||
|
||||
\definition{Dot Product}
|
||||
Given two vectors $a, b \in \mathbb{R}^n$, the \textit{dot product} of $a$ and $b$ (written $a \cdot b$ or $\langle a, b \rangle$) is $\sum_1^n a_ib_i$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In other words, if $a = [1, 2, 3]$ and $b = [4, 5, 6]$,
|
||||
For example, if $a = [1, 2, 3]$ and $b = [4, 5, 6]$,
|
||||
$$
|
||||
a \cdot b = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32
|
||||
\langle a, b \rangle = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32
|
||||
$$
|
||||
As you may expect, the dot product $ab$ is valid iff $a$ and $b$ are the same size.
|
||||
As you may expect, the dot product $\langle a, b \rangle$ is valid iff $a$ and $b$ are the same size.
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that the dot product satisfies the properties of a vector product listed above. \\
|
||||
Conclude that $\mathbb{R}^n$ is a vector space over $\mathbb{R}$.
|
||||
Show that the dot product is commutative.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the dot product is positive-definite. \\
|
||||
This means that $\langle a, a \rangle > 0$ unless $a = 0$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
@ -29,7 +29,7 @@ Av =
|
||||
4a + 5b + 6c
|
||||
\end{bmatrix}
|
||||
$$
|
||||
Each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
||||
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
||||
|
||||
$$
|
||||
Av =
|
||||
@ -191,10 +191,8 @@ Find a matrix that corresponds to $D$. \\
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Does \ref{thebigtheorem} hold in arbitrary vector spaces? \\
|
||||
Repeat \ref{prooffwd} and \ref{proofback} using only axioms, without assuming that we're working in $\mathbb{R}^n$.
|
||||
Show that the set of all linear maps is a vector space.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user