198 lines
3.8 KiB
TeX

\section{Matrices}
\definition{}
A \textit{matrix} is a two-dimensional array of numbers: \\
$$
A =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
$$
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
\definition{}
We can define the product of a matrix $A$ and a vector $v$:
$$
Av =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
1a + 2b + 3c \\
4a + 5b + 6c
\end{bmatrix}
$$
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
$$
Av =
\begin{bmatrix}
\text{---} a_1 \text{---} \\
\text{---} a_2 \text{---}
\end{bmatrix}
\begin{bmatrix}
| \\
v \\
| \\
\end{bmatrix}
=
\begin{bmatrix}
r_1v \\
r_2v
\end{bmatrix}
$$
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
\problem{}
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
\vfill
\problem{}
Compute the following:
$$
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\begin{bmatrix}
5 \\ 3
\end{bmatrix}
$$
\vfill
\pagebreak
\generic{Remark:}
It is a bit more interesting to think of matrix-vector multiplication in the following way: \\
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
\begin{center}
The problem:
\vspace{2mm}
$$
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\begin{bmatrix}
5 \\ 3
\end{bmatrix}
=
\begin{bmatrix}
11 \\ 27 \\ 43
\end{bmatrix}
$$
\end{center}
\end{minipage}%
\hfill
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
\begin{center}
Top-input, right-output:
\vspace{2mm}
\begin{tikzpicture}[>=stealth,thick,baseline]
\matrix [
matrix of math nodes,
left delimiter={[},
right delimiter={]}
] (A) {
1 & 2 \\
3 & 4 \\
5 & 6 \\
};
\node[
fit=(A-1-1)(A-1-1),
inner xsep=0mm,inner ysep=3mm,
label=above:5
] (L) {};
\draw[->, gray] (L.north) -- ([yshift=0mm]A-1-1.north);
\node[
fit=(A-1-2)(A-1-2),
inner xsep=0mm,inner ysep=3mm,
label=above:3
] (R) {};
\draw[->, gray] (R.north) -- ([yshift=0mm]A-1-2.north);
\node[
fit=(A-1-2)(A-1-2),
inner xsep=8mm,inner ysep=0mm,
label=right:{$5 + 6 = 11$}
](Y) {};
\draw[->, gray] ([xshift=3mm]A-1-2.east) -- (Y);
\node[
fit=(A-2-2)(A-2-2),
inner xsep=8mm,inner ysep=0mm,
label=right:{$15 + 12 = 27$}
](H) {};
\draw[->, gray] ([xshift=3mm]A-2-2.east) -- (H);
\node[
fit=(A-3-2)(A-3-2),
inner xsep=8mm,inner ysep=0mm,
label=right:{$25 + 18 = 43$}
](N) {};
\draw[->, gray] ([xshift=3mm]A-3-2.east) -- (N);
\end{tikzpicture}
\end{center}
\end{minipage}%
\vspace{2mm}
This is only a model for intuition, though. \\
Make sure you understand the dot product definition on the previous page.
\vspace{5mm}
\theorem{}<thebigtheorem>
Any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as an $n \times m$ matrix. \\
Conversely, every $n \times m$ matrix represents a liner map $T: \mathbb{R}^n \to \mathbb{R}^m$ \\
\vspace{2mm}
In other words, \textbf{matrices are linear transformations}.
\problem{}<prooffwd>
Show that the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(v) = Av$ is linear. \\
\hint{What is $A$? What is $v$? What are their sizes?}
\vfill
\problem{}<proofback>
Show that any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ can be written as $T(v) = Av$.
\vfill
\problem{}
Consider the transformation $D: \mathbb{P}^3 \to \mathbb{P}^2$ defined by $D(p) = \frac{d}{dx}p$. \\
Find a matrix that corresponds to $D$. \\
\hint{$\mathbb{P}^3$ and $\mathbb{R}^4$ are isomorphic. How so?}
\vfill
\pagebreak
\problem{}
Show that the set of all linear maps is a vector space.
\vfill
\pagebreak