Rewrote Vectors, added Norms
This commit is contained in:
parent
c18af4f5b8
commit
a74f04f27a
@ -2,7 +2,8 @@
|
|||||||
% use [solutions] flag to show solutions.
|
% use [solutions] flag to show solutions.
|
||||||
\documentclass[
|
\documentclass[
|
||||||
solutions,
|
solutions,
|
||||||
singlenumbering
|
nowarning,
|
||||||
|
%singlenumbering
|
||||||
]{../../resources/ormc_handout}
|
]{../../resources/ormc_handout}
|
||||||
|
|
||||||
\usepackage{tikz}
|
\usepackage{tikz}
|
||||||
@ -32,16 +33,44 @@
|
|||||||
\input{parts/3 matrices}
|
\input{parts/3 matrices}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Norms}
|
||||||
|
|
||||||
\section{Bonus}
|
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
Show that $\mathbb{P}^n$ is a vector space.
|
If $V$ is a vector space, a \textit{norm} in $V$ is a function $V \to \mathbb{R}^+$ that satisfies the following properties, \\
|
||||||
|
Where $x, y \in V$ and $c \in F$:
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item Absolute Homogeneity: $||cx|| = |c|~||x||$
|
||||||
|
\item Positive-Definite: $||x|| \geq 0$ with equality iff $x = 0$.
|
||||||
|
\item Triangle Inequalty: $||x+y|| \leq ||x|| + ||y||$
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that the \textit{euclidian norm} defined by $||~[a, b]~|| = \sqrt{a^2 + b^2}$ is a norm on $\mathbb{R}^2$
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that the set of all linear maps is a vector space.
|
Show that in any vector space with an inner product, the \textit{induced norm} $||x|| = \sqrt{\langle x, x \rangle}$ is a norm.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that every norm satisfies the reverse triangle inequality:
|
||||||
|
|
||||||
|
$$
|
||||||
|
||x - y|| \geq |~||x|| - ||y||~|
|
||||||
|
$$
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Prove the Cauchy-Schwartz inequality:
|
||||||
|
|
||||||
|
$$
|
||||||
|
||\langle x, y \rangle|| = ||x||~||y||
|
||||||
|
$$
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
@ -1,6 +1,6 @@
|
|||||||
\section{Spaces}
|
\section{Spaces}
|
||||||
|
|
||||||
\definition{Vector Spaces}
|
\definition{}
|
||||||
A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
|
A \textit{space} over a field $\mathbb{F}$ consists of the following elements:
|
||||||
\begin{itemize}[itemsep = 2mm]
|
\begin{itemize}[itemsep = 2mm]
|
||||||
\item A set $V$, the elements of which are called \textit{vectors}
|
\item A set $V$, the elements of which are called \textit{vectors}
|
||||||
@ -46,7 +46,7 @@ In both tables, $x, y, z \in V$ and $a, b\in \mathbb{F}$.
|
|||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tabular}{l | r@{=}l }
|
\begin{tabular}{l | r@{=}l }
|
||||||
\hline
|
\hline
|
||||||
\multicolumn{3}{|c|}{Properties of vector multiplication} \\
|
\multicolumn{3}{|c|}{Properties of scalar multiplication} \\
|
||||||
\hline
|
\hline
|
||||||
Closure & \multicolumn{2}{c}{$ax \in V$} \\
|
Closure & \multicolumn{2}{c}{$ax \in V$} \\
|
||||||
Distributivity & $a(x+y)~$&$~ax+ay$ \\
|
Distributivity & $a(x+y)~$&$~ax+ay$ \\
|
||||||
@ -59,39 +59,53 @@ In both tables, $x, y, z \in V$ and $a, b\in \mathbb{F}$.
|
|||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
$^*$ Remember that $a, b \in \mathbb{F}$ and $x \in V$. Thus, $(ab)$ is scalar multiplication and $(bx)$ is vector multiplication. \\
|
$^*$ Remember that $a, b \in \mathbb{F}$ and $x \in V$. Thus, $(ab)$ is multiplication in $\mathbb{F}$ and $(bx)$ is scalar multiplication in $V$. Compatibility is \textit{not} associativity. \\
|
||||||
Compatibility is \textit{not} associativity, it is \say{compatibility of vector and scalar multiplication.}
|
|
||||||
|
|
||||||
\vfill
|
Likewise, the addition you see in the distributive property of multiplication is field addition, not vector addition.
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
\definition{}
|
\vspace{6mm}
|
||||||
There is a good chance you are familiar with basic vector arithmetic. \\
|
|
||||||
Here's a quick review:
|
Usually, the word \textit{vector} refers to an element of $\mathbb{R}^n$. As you might expect $\mathbb{R}^n$ is a vector space over the field $\mathbb{R}$ under our usual vector operations.
|
||||||
|
|
||||||
|
Here's a quick review of these operations:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Scalar multiplication is done elementwise: $3 \times [a, b, c] = [3a, 3b, 3c]$.
|
\item Scalar multiplication is done elementwise: $3 \times [a, b, c] = [3a, 3b, 3c]$.
|
||||||
\item Vector addition is similar: $[a, b, c] + [1, 2, 3] = [a+1,~b+2,~c+3]$.
|
\item Vector addition is similar: $[a, b, c] + [1, 2, 3] = [a+1,~b+2,~c+3]$.
|
||||||
\item Vector addition is not valid for vectors of different sizes.
|
\item Vector addition is not valid for vectors of different sizes.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Verify that $\mathbb{R}^n$ is a vector space over $\mathbb{R}$ under these operations.
|
||||||
|
|
||||||
\definition{}
|
\vfill
|
||||||
We usually use the \textit{dot product} as our vector product. It is defined as follows. \\
|
|
||||||
Given two vectors $a, b \in \mathbb{R}^n$, the dot product $a \cdot b$ is $\sum_1^n a_ib_i$.
|
\pagebreak
|
||||||
|
|
||||||
|
We can also define an \textit{inner product} or \textit{vector product} that takes two elements of $V$ and produces another. \\
|
||||||
|
|
||||||
|
When we work in $\mathbb{R}^n$, we usually use the dot product as our vector product. It is defined as follows: \\
|
||||||
|
|
||||||
|
\definition{Dot Product}
|
||||||
|
Given two vectors $a, b \in \mathbb{R}^n$, the \textit{dot product} of $a$ and $b$ (written $a \cdot b$ or $\langle a, b \rangle$) is $\sum_1^n a_ib_i$.
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
In other words, if $a = [1, 2, 3]$ and $b = [4, 5, 6]$,
|
For example, if $a = [1, 2, 3]$ and $b = [4, 5, 6]$,
|
||||||
$$
|
$$
|
||||||
a \cdot b = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32
|
\langle a, b \rangle = (1 \times 4) + (2 \times 5) + (3 \times 6) = 32
|
||||||
$$
|
$$
|
||||||
As you may expect, the dot product $ab$ is valid iff $a$ and $b$ are the same size.
|
As you may expect, the dot product $\langle a, b \rangle$ is valid iff $a$ and $b$ are the same size.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that the dot product satisfies the properties of a vector product listed above. \\
|
Show that the dot product is commutative.
|
||||||
Conclude that $\mathbb{R}^n$ is a vector space over $\mathbb{R}$.
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that the dot product is positive-definite. \\
|
||||||
|
This means that $\langle a, a \rangle > 0$ unless $a = 0$.
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
@ -29,7 +29,7 @@ Av =
|
|||||||
4a + 5b + 6c
|
4a + 5b + 6c
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
$$
|
$$
|
||||||
Each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
Av =
|
Av =
|
||||||
@ -191,10 +191,8 @@ Find a matrix that corresponds to $D$. \\
|
|||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Does \ref{thebigtheorem} hold in arbitrary vector spaces? \\
|
Show that the set of all linear maps is a vector space.
|
||||||
Repeat \ref{prooffwd} and \ref{proofback} using only axioms, without assuming that we're working in $\mathbb{R}^n$.
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user