Added hxh, superdense, and teleport
This commit is contained in:
		
							
								
								
									
										421
									
								
								Advanced/Introduction to Quantum/src/parts/06 hxh.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										421
									
								
								Advanced/Introduction to Quantum/src/parts/06 hxh.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,421 @@ | ||||
| \section{HXH} | ||||
|  | ||||
| Let's return to the quantum circuit diagrams we discussed a few pages ago. \par | ||||
| Keep in mind that we're working with quantum gates and proper half-qubits---not classical bits, as we were before. | ||||
|  | ||||
| \definition{Controlled Inputs} | ||||
| A \textit{control input} or \textit{inverted control input} may be attached to any gate. \par | ||||
| These are drawn as filled and empty circles in our circuit diagrams: | ||||
|  | ||||
| \null\hfill | ||||
| \begin{minipage}{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale=0.8] | ||||
| 			\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 			\node[qubit] (b) at (0, -1) {$\ket{0}$}; | ||||
|  | ||||
| 			\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{0}$}; | ||||
| 			\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$}; | ||||
|  | ||||
| 			\draw[wire] | ||||
| 			($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
| 			\qubox{a}{1}{a}{2}{$X$} | ||||
|  | ||||
| 			\node[gray] at ($([shift={(0,-0.75)}] dot)$) {Non-inverted control input}; | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{minipage} | ||||
| \hfill | ||||
| \begin{minipage}{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale=0.8] | ||||
| 			\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 			\node[qubit] (b) at (0, -1) {$\ket{0}$}; | ||||
|  | ||||
| 			\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$}; | ||||
| 			\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$}; | ||||
|  | ||||
| 			\draw[wire] | ||||
| 			($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			; | ||||
| 			\draw[wireijoin] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
| 			\qubox{a}{1}{a}{2}{$X$} | ||||
|  | ||||
| 			\node[gray] at ($([shift={(0,-0.75)}] dot)$) {Inverted control input}; | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{minipage} | ||||
| \hfill\null | ||||
| \vspace{2mm} | ||||
|  | ||||
| An $X$ gate with a (non-inverted) control input behaves like an $X$ gate if \textit{all} its control inputs are $\ket{1}$, | ||||
| and like $I$ otherwise. An $X$ gate with an inverted control inputs does the opposite, behaving like $I$ if its input is $\ket{1}$ | ||||
| and like $X$ otherwise. The two circuits above illustrate this fact---take a look at their inputs and outputs. | ||||
|  | ||||
| \vspace{2mm} | ||||
| Of course, we can give a gate multiple controls. \par | ||||
| An $X$ gate with multiplie controls behaves like an $X$ gate if... | ||||
| \begin{itemize} | ||||
| 	\item all non-inverted controls are $\ket{1}$, and | ||||
| 	\item all inverted controls are $\ket{0}$ | ||||
| \end{itemize} | ||||
| ...and like $I$ otherwise. | ||||
|  | ||||
| \problem{} | ||||
| What are the final states of the qubits in the diagram below? | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale = 1.0] | ||||
| 		\node[qubit] (a) at (0, 0) {$\ket{1}$}; | ||||
| 		\node[qubit] (b) at (0, -1) {$\ket{0}$}; | ||||
| 		\node[qubit] (c) at (0, -2) {$\ket{1}$}; | ||||
| 		\node[qubit] (d) at (0, -3) {$\ket{0}$}; | ||||
|  | ||||
| 		\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {?}; | ||||
| 		\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {?}; | ||||
| 		\draw[wire] (c) -- ([shift={(3, 0)}] c.center) node[qubit] {?}; | ||||
| 		\draw[wire] (d) -- ([shift={(3, 0)}] d.center) node[qubit] {?}; | ||||
|  | ||||
| 		\draw[wire] | ||||
| 		($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 		($([shift={(1,0)}] d)!0.5!([shift={(2,0)}] d)$) | ||||
| 		; | ||||
| 		\draw[wirejoin] | ||||
| 			($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
| 		\draw[wireijoin] | ||||
| 			($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
| 		\draw[wirejoin] | ||||
| 			($([shift={(1,0)}] d)!0.5!([shift={(2,0)}] d)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
| 		\qubox{b}{1}{b}{2}{$X$} | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Consider the diagram below, with one controlled $X$ gate: \par | ||||
| \note[Note]{The CNOT gate from \ref{cnot} is a controlled $X$ gate.} | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale=0.8] | ||||
| 		\node[qubit] (a) at (0, 0) {$\ket{a}$}; | ||||
| 		\node[qubit] (b) at (0, -1) {$\ket{b}$}; | ||||
|  | ||||
| 		\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {}; | ||||
| 		\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {}; | ||||
|  | ||||
| 		\draw[wire] | ||||
| 		($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 		($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 		; | ||||
| 		\draw[wirejoin] | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
| 		\qubox{a}{1}{a}{2}{$X$} | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| Find a matrix $\text{X}_\text{c}$ that represents this gate, so that $\text{X}_\text{c}\ket{ab}$ works as expected. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		\text{X}_\text{c} = \begin{bmatrix} | ||||
| 			1 & 0 & 0 & 0 \\ | ||||
| 			0 & 0 & 0 & 1 \\ | ||||
| 			0 & 0 & 1 & 0 \\ | ||||
| 			0 & 1 & 0 & 0 | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
| 	Note that this is also the solution to \ref{cnotflipped}. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Now, evaluate the following. Remember that | ||||
| $\ket{+} = \frac{1}{\sqrt{2}}\Bigl(\ket{0} + \ket{1}\Bigr)$ and | ||||
| $\ket{-} = \frac{1}{\sqrt{2}}\Bigl(\ket{0} - \ket{1}\Bigr)$ | ||||
|  | ||||
| \null\hfill | ||||
| \begin{minipage}{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale=0.8] | ||||
| 			\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 			\node[qubit] (b) at (0, -1) {$\ket{1}$}; | ||||
|  | ||||
| 			\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; | ||||
| 			\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; | ||||
|  | ||||
| 			\draw[wire] | ||||
| 			($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
| 			\qubox{a}{1}{a}{2}{$X$} | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{minipage} | ||||
| \hfill | ||||
| \begin{minipage}{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale=0.8] | ||||
| 			\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 			\node[qubit] (b) at (0, -1) {$\ket{+}$}; | ||||
|  | ||||
| 			\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; | ||||
| 			\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; | ||||
|  | ||||
| 			\draw[wire] | ||||
| 			($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
| 			\qubox{a}{1}{a}{2}{$X$} | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{minipage} | ||||
| \hfill\null | ||||
|  | ||||
| \vspace{5mm} | ||||
|  | ||||
| \null\hfill | ||||
| \begin{minipage}{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale=0.8] | ||||
| 			\node[qubit] (a) at (0, 0) {$\ket{-}$}; | ||||
| 			\node[qubit] (b) at (0, -1) {$\ket{1}$}; | ||||
|  | ||||
| 			\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; | ||||
| 			\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; | ||||
|  | ||||
| 			\draw[wire] | ||||
| 			($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
| 			\qubox{a}{1}{a}{2}{$X$} | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{minipage} | ||||
| \hfill | ||||
| \begin{minipage}{0.48\textwidth} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale=0.8] | ||||
| 			\node[qubit] (a) at (0, 0) {$\ket{+}$}; | ||||
| 			\node[qubit] (b) at (0, -1) {$\ket{-}$}; | ||||
|  | ||||
| 			\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$}; | ||||
| 			\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$}; | ||||
|  | ||||
| 			\draw[wire] | ||||
| 			($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
| 			\qubox{a}{1}{a}{2}{$X$} | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{minipage} | ||||
| \hfill\null | ||||
|  | ||||
| \hint{ | ||||
| 	Note that some of these states are entangled. The circuit diagrams are a bit misleading: | ||||
| 	we can't write an entangled state as two distinct qubits! | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	So, don't try to find $\ket{a}$ and $\ket{b}$. \par | ||||
| 	Instead find $\ket{ab} = \psi_0\ket{00} + \psi_1\ket{01} + \psi_2\ket{10} + \psi_3\ket{11}$, and factor it into $\ket{a} \otimes \ket{b}$ if you can. | ||||
| } | ||||
|  | ||||
| \begin{solution} | ||||
| 	In all the below equations, let $\tau = \frac{1}{\sqrt{2}}$. | ||||
| 	\begin{itemize}[itemsep = 1mm] | ||||
| 		\item $ | ||||
| 			\text{X}_\text{c}\ket{01} | ||||
| 			= \ket{11} | ||||
| 		$ | ||||
|  | ||||
| 		\item $ | ||||
| 			\text{X}_\text{c}\ket{0+} | ||||
| 			= \tau\ket{00}  + \tau\ket{11} | ||||
| 		$ \note[Note]{This state is entangled!} | ||||
|  | ||||
| 		\item $ | ||||
| 			\text{X}_\text{c}\ket{-1} | ||||
| 			= -\tau\ket{10} + \tau\ket{11} | ||||
| 			= (-\ket{-}) \otimes \ket{1} | ||||
| 		$ | ||||
|  | ||||
| 		\item $ | ||||
| 			\text{X}_\text{c}\ket{+-} | ||||
| 			= \frac{1}{2}(\ket{00} - \ket{01} + \ket{10} - \ket{11}) | ||||
| 			= \ket{+-} | ||||
| 		$ | ||||
| 	\end{itemize} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \generic{Remark:} | ||||
| Now, consider the following circuit: | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale=0.8] | ||||
| 		\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 		\node[qubit] (b) at (0, -1) {$\ket{1}$}; | ||||
|  | ||||
| 		\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{a}$}; | ||||
| 		\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{b}$}; | ||||
|  | ||||
| 		\qubox{b}{1}{b}{2}{$H$} | ||||
| 		\qubox{b}{3}{b}{4}{$H$} | ||||
|  | ||||
| 		\draw[wire] | ||||
| 		($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) -- | ||||
| 		($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) | ||||
| 		; | ||||
| 		\draw[wirejoin] | ||||
| 			($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
| 		\qubox{a}{2}{a}{3}{$X$} | ||||
|  | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| We already know that $H$ is its own inverse: $HH = I$. \par | ||||
| Applying $H$ to a qubit twice does not change its state. | ||||
|  | ||||
| \note{ | ||||
| 	Recall that $H = \frac{1}{\sqrt{2}}\left[\begin{smallmatrix} 1 & 1 \\ 1 & -1 \end{smallmatrix}\right]$ | ||||
| } | ||||
|  | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| So, we might expect that the two circuits below are equivalent: \par | ||||
| After all, we $H$ the second bit, use it to control an $X$ gate, and then $H$ it back to its previous state. | ||||
|  | ||||
| \null\hfill | ||||
| \begin{minipage}{0.48\textwidth}\begin{center} | ||||
| 	\begin{tikzpicture}[scale=0.8] | ||||
| 		\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 		\node[qubit] (b) at (0, -1) {$\ket{1}$}; | ||||
|  | ||||
| 		\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{a}$}; | ||||
| 		\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{b}$}; | ||||
|  | ||||
| 		\qubox{b}{1}{b}{2}{$H$} | ||||
| 		\qubox{b}{3}{b}{4}{$H$} | ||||
|  | ||||
| 		\draw[wire] | ||||
| 		($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) -- | ||||
| 		($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) | ||||
| 		; | ||||
| 		\draw[wirejoin] | ||||
| 			($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
| 		\qubox{a}{2}{a}{3}{$X$} | ||||
|  | ||||
| 	\end{tikzpicture} | ||||
| \end{center}\end{minipage} | ||||
| \hfill | ||||
| \begin{minipage}{0.48\textwidth}\begin{center} | ||||
| 	\begin{tikzpicture}[scale=0.8] | ||||
| 		\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 		\node[qubit] (b) at (0, -1) {$\ket{1}$}; | ||||
|  | ||||
| 		\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{c}$}; | ||||
| 		\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{d}$}; | ||||
|  | ||||
| 		\draw[wire] | ||||
| 		($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) -- | ||||
| 		($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) | ||||
| 		; | ||||
| 		\draw[wirejoin] | ||||
| 			($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
| 		\qubox{a}{2}{a}{3}{$X$} | ||||
|  | ||||
| 	\end{tikzpicture} | ||||
| \end{center}\end{minipage} | ||||
| \hfill\null | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| This, however, isn't the case: \par | ||||
| If we compute the state $\ket{ab}$ in the left circuit, we get $[0.5, ~0.5, -0.5, ~0.5]$ (which is entangled), \par | ||||
| but the state $\ket{cd}$ on the right is $\ket{11} = [0,0,0,1]$. \par | ||||
| \note{This is easy to verify with a few matrix multiplications.} | ||||
|  | ||||
|  | ||||
| \vspace{4mm} | ||||
|  | ||||
| How does this make sense? \par | ||||
| Remember that a two-bit quantum state is \textit{not} equivalent to a pair of one-qubit quantum states. | ||||
| We must treat a multi-qubit state as a single unit. | ||||
|  | ||||
| Recall that a two-bit state $\ket{ab}$ comes with four probabilities: | ||||
| $\mathcal{P}(\texttt{00})$, $\mathcal{P}(\texttt{01})$, $\mathcal{P}(\texttt{10})$, and $\mathcal{P}(\texttt{11})$. | ||||
| If we change the probabilities of only $\ket{a}$, \textit{all four of these change!} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| Because of this fact, \say{controlled gates} may not work as you expect. They may seem | ||||
| to \say{read} their controlling qubit without affecting its state, but remember---a | ||||
| controlled gate still affects the \textit{entire} state. As we noted before, it is | ||||
| not possible to apply a transformation to one bit of a quantum state. | ||||
|  | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale=1] | ||||
| 		\node[qubit] (a) at (0, 0) {\texttt{1}}; | ||||
| 		\node[qubit] (b) at (0, -1) {\texttt{0}}; | ||||
|  | ||||
| 		\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {\texttt{0}}; | ||||
| 		\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {\texttt{1}}; | ||||
|  | ||||
| 		\ghostqubox{a}{1}{b}{2}{$T_1$} | ||||
| 		\ghostqubox{a}{2}{b}{3}{$T_2$} | ||||
| 		\ghostqubox{a}{3}{b}{4}{$T_3$} | ||||
|  | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										195
									
								
								Advanced/Introduction to Quantum/src/parts/07 superdense.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										195
									
								
								Advanced/Introduction to Quantum/src/parts/07 superdense.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,195 @@ | ||||
| \section{Superdense Coding} | ||||
|  | ||||
| Consider the following entangled two-qubit states, called the \textit{bell states}: | ||||
| \begin{itemize} | ||||
| 	\item $\ket{\Phi^+} = \frac{1}{\sqrt{2}}\ket{00} + \frac{1}{\sqrt{2}}\ket{11}$ | ||||
| 	\item $\ket{\Phi^-} = \frac{1}{\sqrt{2}}\ket{00} - \frac{1}{\sqrt{2}}\ket{11}$ | ||||
| 	\item $\ket{\Psi^+} = \frac{1}{\sqrt{2}}\ket{01} + \frac{1}{\sqrt{2}}\ket{10}$ | ||||
| 	\item $\ket{\Psi^-} = \frac{1}{\sqrt{2}}\ket{01} - \frac{1}{\sqrt{2}}\ket{10}$ | ||||
| \end{itemize} | ||||
|  | ||||
| \problem{} | ||||
| The probabilistic bits we get when measuring any of the above may be called \textit{anticorrelated bits}. \par | ||||
| If we measure the first bit of any of these states and observe $1$, what is the resulting compound state? \par | ||||
| What if we observe $0$ instead? \par | ||||
| Do you see why we can call these bits anticorrelated? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Show that the bell states are orthogonal \par | ||||
| \hint{Dot product} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{}<bellmeasure> | ||||
| Say we have a pair of qubits in one of the four bell states. \par | ||||
| How can we find out which of the four states we have, with certainty? \par | ||||
| \hint{$H\ket{+} = \ket{0}$, and $H\ket{-} = \ket{1}$} | ||||
|  | ||||
| \begin{solution} | ||||
| 	$X_\text{c}\ket{\Phi^+} = \ket{+0}$ and $(H \otimes I)\ket{+0} = \ket{00}$ \par | ||||
| 	$X_\text{c}\ket{\Psi^+} = \ket{+1}$ and $(H \otimes I)\ket{+1} = \ket{01}$ \par | ||||
| 	$X_\text{c}\ket{\Phi^-} = \ket{-0}$ and $(H \otimes I)\ket{-0} = \ket{10}$ \par | ||||
| 	$X_\text{c}\ket{\Psi^-} = \ket{-1}$ and $(H \otimes I)\ket{-1} = \ket{11}$ \par | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \definition{} | ||||
| The $Z$ gate is defined as follows: \par | ||||
| \begin{equation*} | ||||
| 	Z\begin{bmatrix} | ||||
| 		\psi_0 \\ \psi_1 | ||||
| 	\end{bmatrix} | ||||
| 	= | ||||
| 	\begin{bmatrix} | ||||
| 		\psi_0 \\ -\psi_1 | ||||
| 	\end{bmatrix} | ||||
| \end{equation*} | ||||
|  | ||||
| \problem{} | ||||
| Suppose that Alice and Bob are each in possession of one qubit. \par | ||||
| These two qubits are entangled, and have the compound state $\ket{\Phi^+}$. \par | ||||
| How can Alice send a two-bit classical state | ||||
| (i.e, one of the four values \texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}) \par | ||||
| to Bob by only sending one qubit? | ||||
|  | ||||
| \begin{solution} | ||||
| 	Alice can turn any bell state into any other by applying operations to her qubit. \par | ||||
| 	Once she does so, Bob may use the procedure in \ref{bellmeasure} to read one of four states. | ||||
|  | ||||
| 	\null\hfill | ||||
| 	\begin{minipage}{0.3\textwidth} | ||||
| 		\begin{center} | ||||
| 			\begin{tikzpicture}[scale = 1] | ||||
| 				\node[qubit] (a) at (0, 0) {}; | ||||
| 				\node[qubit] (b) at (0, -1) {}; | ||||
| 				\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {}; | ||||
| 				\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {}; | ||||
| 				\node[right] at (0, -0.5) {$\ket{\Phi^+}$}; | ||||
| 				\node[left] at (4, -0.5) {$\ket{\Phi^-}$}; | ||||
|  | ||||
| 				\qubox{a}{1.5}{a}{2.5}{$Z$} | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}{0.3\textwidth} | ||||
| 		\begin{center} | ||||
| 			\begin{tikzpicture}[scale = 1] | ||||
| 				\node[qubit] (a) at (0, 0) {}; | ||||
| 				\node[qubit] (b) at (0, -1) {}; | ||||
| 				\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {}; | ||||
| 				\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {}; | ||||
| 				\node[right] at (0, -0.5) {$\ket{\Phi^+}$}; | ||||
| 				\node[left] at (4, -0.5) {$\ket{\Psi^+}$}; | ||||
|  | ||||
| 				\qubox{a}{1.5}{a}{2.5}{$X$} | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill | ||||
| 	\begin{minipage}{0.3\textwidth} | ||||
| 		\begin{center} | ||||
| 			\begin{tikzpicture}[scale = 1] | ||||
| 				\node[qubit] (a) at (0, 0) {}; | ||||
| 				\node[qubit] (b) at (0, -1) {}; | ||||
| 				\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {}; | ||||
| 				\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {}; | ||||
| 				\node[right] at (0, -0.5) {$\ket{\Phi^+}$}; | ||||
| 				\node[left] at (4, -0.5) {$\ket{\Psi^-}$}; | ||||
|  | ||||
| 				\qubox{a}{1}{a}{2}{$X$} | ||||
| 				\qubox{a}{2}{a}{3}{$Z$} | ||||
| 			\end{tikzpicture} | ||||
| 		\end{center} | ||||
| 	\end{minipage} | ||||
| 	\hfill\null | ||||
|  | ||||
| 	\vspace{4mm} | ||||
| 	\linehack{} | ||||
|  | ||||
| 	The complete circuit is shown below. Double lines indicate classical bits. | ||||
|  | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale = 1] | ||||
| 			\node[qubit] (a) at (0, 0) {$a$}; | ||||
| 			\node[qubit] (b) at (0, -1) {$b$}; | ||||
| 			\node[qubit] (c) at (0, -2) {$\ket{\Phi^+_\text{A}}$}; | ||||
| 			\node[qubit] (d) at (0, -3) {$\ket{\Phi^+_\text{B}}$}; | ||||
| 			\draw[wire, double] (a) -- ([shift={(9, 0)}] a.center) node[qubit] {}; | ||||
| 			\draw[wire, double] (b) -- ([shift={(9, 0)}] b.center) node[qubit] {}; | ||||
| 			\draw[wire] (c) -- ([shift={(7, 0)}] c.center) node[qubit] {}; | ||||
| 			\draw[wire] (d) -- ([shift={(7, 0)}] d.center) node[qubit] {}; | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				([shift={(7, 0)}] c.center) | ||||
| 				-- ([shift={(9, 0)}] c.center) | ||||
| 				node[qubit] {$a$} | ||||
| 			; | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				([shift={(7, 0)}] d.center) | ||||
| 				-- ([shift={(9, 0)}] d.center) | ||||
| 				node[qubit] {$b$} | ||||
| 			; | ||||
|  | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) -- | ||||
| 				($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
|  | ||||
| 			\qubox{c}{1}{c}{2}{$X$} | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) -- | ||||
| 				($([shift={(2,0)}] c)!0.5!([shift={(3,0)}] c)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
|  | ||||
| 			\qubox{c}{2}{c}{3}{$Z$} | ||||
|  | ||||
|  | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				($([shift={(4,0)}] c)!0.5!([shift={(5,0)}] c)$) -- | ||||
| 				($([shift={(4,0)}] d)!0.5!([shift={(5,0)}] d)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(4,0)}] c)!0.5!([shift={(5,0)}] c)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
|  | ||||
| 			\qubox{d}{4}{d}{5}{$X$} | ||||
| 			\qubox{c}{5}{c}{6}{$H$} | ||||
|  | ||||
|  | ||||
|  | ||||
| 			\qubox{c}{6.3}{c}{8}{measure} | ||||
| 			\qubox{d}{6.3}{d}{8}{measure} | ||||
|  | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \generic{Remark:} | ||||
| Superdense coding consumes a pre-shared entangled pair to transmit two bits of information. | ||||
| This entanglement may \textit{not} be re-used---it is destroyed when Bob measures the final qubit states. | ||||
|  | ||||
| \pagebreak | ||||
|  | ||||
							
								
								
									
										126
									
								
								Advanced/Introduction to Quantum/src/parts/08 teleport.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										126
									
								
								Advanced/Introduction to Quantum/src/parts/08 teleport.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,126 @@ | ||||
| \section{Quantum Teleportation} | ||||
|  | ||||
| Superdense coding lets us convert quantum bandwidth into classical bandwidth. \par | ||||
| Quantum teleporation does the opposite, using two classical bits and an entangled pair to transmit a quantum state. | ||||
|  | ||||
| \generic{Setup:} | ||||
| Again, suppose Alice and Bob each have half of a $\ket{\Phi^+}$ state. \par | ||||
| We'll call the state Alice wants to teleport $\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}$. \par | ||||
|  | ||||
| \problem{} | ||||
| What is the three-qubit state $\ket{\psi}\ket{\Phi^+}$ in terms of $\psi_0$ and $\psi_1$? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| To teleport $\ket{\psi}$, Alice applies the following circuit to her two qubits, where $\ket{\Phi^+_\text{A}}$ is her half of $\ket{\Phi^+}$. \par | ||||
| She then measures both qubits and sends the result to Bob. | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale = 1] | ||||
| 		\node[qubit] (a) at (0, 0) {$\ket{\Phi^+_\text{A}}$}; | ||||
| 		\node[qubit] (b) at (0, -1) {$\ket{\psi}$}; | ||||
| 		\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {}; | ||||
| 		\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {}; | ||||
|  | ||||
| 		\draw[wire] | ||||
| 		($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 		($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 		; | ||||
| 		\draw[wirejoin] | ||||
| 			($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) | ||||
| 			circle[radius=0.1] coordinate(dot) | ||||
| 		; | ||||
|  | ||||
| 		\qubox{b}{2}{b}{3}{$H$} | ||||
| 		\qubox{a}{1}{a}{2}{$X$} | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
| What should Bob do so that $\ket{\Phi^+_B}$ takes the state $\ket{\psi}$ had initially? | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{itemize} | ||||
| 		\item | ||||
| 		If Bob receives \texttt{00}, he does nothing. | ||||
|  | ||||
| 		\item | ||||
| 		If Bob receives \texttt{01}, he applies an $X$ gate to his qubit. | ||||
|  | ||||
| 		\item | ||||
| 		If Bob receives \texttt{01}, he applies a $Z$ gate to his qubit. | ||||
|  | ||||
| 		\item | ||||
| 		If Bob receives \texttt{11}, he applies $ZX$ to his qubit. | ||||
| 	\end{itemize} | ||||
|  | ||||
| 	\linehack{} | ||||
|  | ||||
| 	The complete circuit is shown below. Double lines indicate classical bits. | ||||
|  | ||||
|  | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale = 1] | ||||
| 			\node[qubit] (a) at (0, -1) {$\ket{\Phi^+_\text{A}}$}; | ||||
| 			\node[qubit] (b) at (0, -2) {$\ket{\Phi^+_\text{B}}$}; | ||||
| 			\node[qubit] (c) at (0, 0) {$\ket{\psi}$}; | ||||
| 			\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {}; | ||||
| 			\draw[wire] (b) -- ([shift={(9, 0)}] b.center) node[qubit] {$\ket{\psi}$}; | ||||
| 			\draw[wire] (c) -- ([shift={(5, 0)}] c.center) node[qubit] {}; | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				([shift={(5, 0)}] a.center) | ||||
| 				-- ([shift={(9, 0)}] a.center) | ||||
| 				node[qubit] {} | ||||
| 			; | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				([shift={(5, 0)}] c.center) | ||||
| 				-- ([shift={(9, 0)}] c.center) | ||||
| 				node[qubit] {} | ||||
| 			; | ||||
|  | ||||
| 			\draw[wire] | ||||
| 				($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) -- | ||||
| 				($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
|  | ||||
| 			\qubox{c}{2}{c}{3}{$H$} | ||||
| 			\qubox{a}{1}{a}{2}{$X$} | ||||
|  | ||||
| 			\qubox{a}{3.8}{a}{5.5}{measure} | ||||
| 			\qubox{c}{3.8}{c}{5.5}{measure} | ||||
|  | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 				($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$) -- | ||||
| 				($([shift={(6,0)}] b)!0.5!([shift={(7,0)}] b)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
|  | ||||
| 			\qubox{b}{6}{b}{7}{$X$} | ||||
|  | ||||
|  | ||||
| 			\draw[wire, double] | ||||
| 			($([shift={(7,0)}] b)!0.5!([shift={(8,0)}] b)$) -- | ||||
| 			($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$) | ||||
| 			; | ||||
| 			\draw[wirejoin] | ||||
| 				($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$) | ||||
| 				circle[radius=0.1] coordinate(dot) | ||||
| 			; | ||||
| 			\qubox{b}{7}{b}{8}{$Z$} | ||||
|  | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
		Reference in New Issue
	
	Block a user