127 lines
3.4 KiB
TeX
127 lines
3.4 KiB
TeX
\section{Quantum Teleportation}
|
|
|
|
Superdense coding lets us convert quantum bandwidth into classical bandwidth. \par
|
|
Quantum teleporation does the opposite, using two classical bits and an entangled pair to transmit a quantum state.
|
|
|
|
\generic{Setup:}
|
|
Again, suppose Alice and Bob each have half of a $\ket{\Phi^+}$ state. \par
|
|
We'll call the state Alice wants to teleport $\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}$. \par
|
|
|
|
\problem{}
|
|
What is the three-qubit state $\ket{\psi}\ket{\Phi^+}$ in terms of $\psi_0$ and $\psi_1$?
|
|
|
|
\vfill
|
|
|
|
\problem{}
|
|
To teleport $\ket{\psi}$, Alice applies the following circuit to her two qubits, where $\ket{\Phi^+_\text{A}}$ is her half of $\ket{\Phi^+}$. \par
|
|
She then measures both qubits and sends the result to Bob.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[scale = 1]
|
|
\node[qubit] (a) at (0, 0) {$\ket{\Phi^+_\text{A}}$};
|
|
\node[qubit] (b) at (0, -1) {$\ket{\psi}$};
|
|
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {};
|
|
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {};
|
|
|
|
\draw[wire]
|
|
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
|
|
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
|
|
;
|
|
\draw[wirejoin]
|
|
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
|
|
circle[radius=0.1] coordinate(dot)
|
|
;
|
|
|
|
\qubox{b}{2}{b}{3}{$H$}
|
|
\qubox{a}{1}{a}{2}{$X$}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
What should Bob do so that $\ket{\Phi^+_B}$ takes the state $\ket{\psi}$ had initially?
|
|
|
|
\begin{solution}
|
|
\begin{itemize}
|
|
\item
|
|
If Bob receives \texttt{00}, he does nothing.
|
|
|
|
\item
|
|
If Bob receives \texttt{01}, he applies an $X$ gate to his qubit.
|
|
|
|
\item
|
|
If Bob receives \texttt{01}, he applies a $Z$ gate to his qubit.
|
|
|
|
\item
|
|
If Bob receives \texttt{11}, he applies $ZX$ to his qubit.
|
|
\end{itemize}
|
|
|
|
\linehack{}
|
|
|
|
The complete circuit is shown below. Double lines indicate classical bits.
|
|
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[scale = 1]
|
|
\node[qubit] (a) at (0, -1) {$\ket{\Phi^+_\text{A}}$};
|
|
\node[qubit] (b) at (0, -2) {$\ket{\Phi^+_\text{B}}$};
|
|
\node[qubit] (c) at (0, 0) {$\ket{\psi}$};
|
|
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {};
|
|
\draw[wire] (b) -- ([shift={(9, 0)}] b.center) node[qubit] {$\ket{\psi}$};
|
|
\draw[wire] (c) -- ([shift={(5, 0)}] c.center) node[qubit] {};
|
|
|
|
\draw[wire, double]
|
|
([shift={(5, 0)}] a.center)
|
|
-- ([shift={(9, 0)}] a.center)
|
|
node[qubit] {}
|
|
;
|
|
|
|
\draw[wire, double]
|
|
([shift={(5, 0)}] c.center)
|
|
-- ([shift={(9, 0)}] c.center)
|
|
node[qubit] {}
|
|
;
|
|
|
|
\draw[wire]
|
|
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
|
|
($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$)
|
|
;
|
|
\draw[wirejoin]
|
|
($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$)
|
|
circle[radius=0.1] coordinate(dot)
|
|
;
|
|
|
|
\qubox{c}{2}{c}{3}{$H$}
|
|
\qubox{a}{1}{a}{2}{$X$}
|
|
|
|
\qubox{a}{3.8}{a}{5.5}{measure}
|
|
\qubox{c}{3.8}{c}{5.5}{measure}
|
|
|
|
|
|
\draw[wire, double]
|
|
($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$) --
|
|
($([shift={(6,0)}] b)!0.5!([shift={(7,0)}] b)$)
|
|
;
|
|
\draw[wirejoin]
|
|
($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$)
|
|
circle[radius=0.1] coordinate(dot)
|
|
;
|
|
|
|
\qubox{b}{6}{b}{7}{$X$}
|
|
|
|
|
|
\draw[wire, double]
|
|
($([shift={(7,0)}] b)!0.5!([shift={(8,0)}] b)$) --
|
|
($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$)
|
|
;
|
|
\draw[wirejoin]
|
|
($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$)
|
|
circle[radius=0.1] coordinate(dot)
|
|
;
|
|
\qubox{b}{7}{b}{8}{$Z$}
|
|
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{solution}
|
|
|
|
\vfill
|
|
\pagebreak
|
|
|