Applied edits

This commit is contained in:
2023-04-20 21:11:28 -07:00
parent 08add061e2
commit a28eba5702
5 changed files with 47 additions and 34 deletions

View File

@@ -9,7 +9,10 @@ A =
4 & 5 & 6
\end{bmatrix}
$$
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix.
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix. \\
\vspace{1mm}
The order \say{first rows, then columns} is usually consistent in linear algebra. \\
If you look closely, you may also find it in the next definition.
\definition{}<matvec>
We can define the product of a matrix $A$ and a vector $v$:
@@ -34,8 +37,8 @@ Note that each element of the resulting $2 \times 1$ matrix is the dot product o
$$
Av =
\begin{bmatrix}
\text{---} a_1 \text{---} \\
\text{---} a_2 \text{---}
\text{---} r_1 \text{---} \\
\text{---} r_2 \text{---}
\end{bmatrix}
\begin{bmatrix}
| \\
@@ -44,20 +47,13 @@ Av =
\end{bmatrix}
=
\begin{bmatrix}
r_1v \\
r_2v
r_1 \cdot v \\
r_2 \cdot v
\end{bmatrix}
$$
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
\problem{}
Say you multiply a size-$m$ vector by an $m \times n$ matrix. What is the size of your result?
\vfill
\problem{}
Compute the following:
@@ -72,6 +68,13 @@ $$
\end{bmatrix}
$$
\vfill
\problem{}
Say you multiply a size-$m$ vector $v$ by an $m \times n$ matrix $A$. \\
What is the size of your result $Av$?
\vfill
\pagebreak
@@ -99,8 +102,8 @@ Note each element of the resulting matrix is dot product of a row of $A$ and a c
$$
AB =
\begin{bmatrix}
\text{---} a_1 \text{---} \\
\text{---} a_2 \text{---}
\text{---} r_1 \text{---} \\
\text{---} r_2 \text{---}
\end{bmatrix}
\begin{bmatrix}
| & | \\
@@ -109,8 +112,8 @@ AB =
\end{bmatrix}
=
\begin{bmatrix}
r_1v_1 & r_1v_2 \\
r_2v_1 & r_2v_2 \\
r_1 \cdot v_1 & r_1 \cdot v_2 \\
r_2 \cdot v_1 & r_2 \cdot v_2 \\
\end{bmatrix}
$$
@@ -263,7 +266,7 @@ Vertical arrays don't look good in horizontal text.
\problem{}
Consider the vectors $a = [1, 4, 3]^T$ and $b = [9, 1, 4]^T$ \\
\begin{itemize}
\item Compute the dot product $ab$.
\item Compute the dot product $a \cdot b$.
\item Can you redefine the dot product using matrix multiplication?
\end{itemize}
\note{As you may have noticed, a vector is a special case of a matrix.}