Cleanup
This commit is contained in:
parent
74a24c50ce
commit
08add061e2
@ -61,7 +61,7 @@
|
||||
Prove the Cauchy-Schwartz inequality:
|
||||
|
||||
$$
|
||||
||\langle x, y \rangle|| = ||x||~||y||
|
||||
||x \cdot y|| = ||x||~||y||
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
@ -31,7 +31,7 @@ Can you develop geometric intuition for their sum and difference?
|
||||
\begin{tikzpicture}[scale=1]
|
||||
|
||||
\draw[->]
|
||||
(0,0) coordinate (o) -- node[below left] {$(1, 2)$}
|
||||
(0,0) coordinate (o) -- node[below left] {$(2, -1)$}
|
||||
(2, -1) coordinate (a)
|
||||
;
|
||||
|
||||
|
@ -40,7 +40,7 @@ Show that the dot product is
|
||||
|
||||
|
||||
\problem{}
|
||||
Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||~||b||\cos(\alpha)$ \\
|
||||
Say you have two vectors, $a$ and $b$. Show that $a \cdot b$ = $||a||~||b||\cos(\alpha)$ \\
|
||||
\hint{What is $c$ in terms of $a$ and $b$?}
|
||||
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
|
||||
\hint{The length of $a$ is $||a||$}
|
||||
@ -83,7 +83,7 @@ Say you have two vectors, $a$ and $b$. Show that $\langle a, b \rangle$ = $||a||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true?
|
||||
If $a$ and $b$ are perpendicular, what must $a \cdot b$ be? Is the converse true?
|
||||
|
||||
|
||||
\vfill
|
||||
|
@ -76,7 +76,7 @@ $$
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
We also multiply a matrix by a matrix:
|
||||
We can also multiply a matrix by a matrix:
|
||||
|
||||
$$
|
||||
AB =
|
||||
@ -257,11 +257,11 @@ $
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
The \say{transpose} operator is often used to write column vectors compactly. \\
|
||||
The \say{transpose} operator is often used to write column vectors in a compact way. \\
|
||||
Vertical arrays don't look good in horizontal text.
|
||||
|
||||
\problem{}
|
||||
Consider the vectors $a = [1, 2, 3]^T$ and $b = [40, 50, 60]^T$ \\
|
||||
Consider the vectors $a = [1, 4, 3]^T$ and $b = [9, 1, 4]^T$ \\
|
||||
\begin{itemize}
|
||||
\item Compute the dot product $ab$.
|
||||
\item Can you redefine the dot product using matrix multiplication?
|
||||
|
Loading…
x
Reference in New Issue
Block a user