Finished last two sections

This commit is contained in:
Mark 2022-11-22 22:17:01 -08:00
parent 61b137e389
commit 9cec9430b8
4 changed files with 334 additions and 4 deletions

View File

@ -23,9 +23,7 @@
\input{parts/02 residual}
\input{parts/03 fulkerson}
\input{parts/04 applications}
\input{parts/05 reductions}
\input{parts/06 bonus}
\end{document}

View File

@ -0,0 +1,131 @@
\section{Reductions}
\definition{Independent Sets}
An \textit{independent set} is a set of vertices\footnotemark{} in which no two are connected. $\{B, C, D, E\}$ form an independent set in the following graph:
\footnotetext{\say{Node} and \say{Vertex} are synonyms in graph theory.}
\begin{center}
\begin{tikzpicture}[
node distance = 12mm,
hatch/.style = {
pattern=north west lines,
pattern color=gray
}
]
% Nodes
\begin{scope}[layer = nodes]
\node[main] (A) {$A$};
% Patterns are transparent.
% Fill nodes first so paths don't show through
\node[main, draw = white] (B1) [above left of = A] {$\phantom{B}$};
\node[main, draw = white] (C1) [below left of = A] {$\phantom{C}$};
\node[main, draw = white] (D1) [below right of = A] {$\phantom{D}$};
\node[main, draw = white] (E1) [above right of = A] {$\phantom{E}$};
\node[main, hatch] (B) [above left of = A] {$B$};
\node[main, hatch] (C) [below left of = A] {$C$};
\node[main, hatch] (D) [below right of = A] {$D$};
\node[main, hatch] (E) [above right of = A] {$E$};
\end{scope}
% Edges
\draw
(A) edge (B)
(A) edge (C)
(A) edge (D)
(A) edge (E)
;
\end{tikzpicture}
\end{center}
\definition{Vertex Covers}
A \textit{vertex cover} is a set of vertices that includes at least one endpoint of each edge. $B$ and $D$ form a vertex cover of the following graph:
\begin{center}
\begin{tikzpicture}[
node distance = 12mm,
hatch/.style = {
pattern=north west lines,
pattern color=gray
}
]
% Nodes
\begin{scope}[layer = nodes]
\node[main] (A) {$A$};
% Patterns are transparent.
% Fill nodes first so paths don't show through
\node[main, draw = white] (B1) [right of = A] {$\phantom{B}$};
\node[main, hatch] (B) [right of = A] {$B$};
\node[main, draw = white] (D1) [below of = B] {$\phantom{D}$};
\node[main, hatch] (D) [below of = B] {$D$};
\node[main] (C) [right of = B] {$C$};
\node[main] (E) [right of = D] {$E$};
\end{scope}
% Edges
\draw
(A) edge (B)
(B) edge (C)
(B) edge (D)
(D) edge (E)
;
% Flow
\draw[path]
(B) -- (A)
(B) -- (C)
(B) -- (D)
(D) -- (E)
;
\end{tikzpicture}
\end{center}
\vfill
\pagebreak
\problem{}<IndepCover>
Let $G$ be a graph with a set of vertices $V$. \\
Show that $S \subset V$ is an independent set iff $(V - S)$ is a vertex cover. \\
\hint{$(V - S)$ is the set of elements in $V$ that are not in $S$.}
\begin{solution}
Suppose $S$ is an independent set.
\begin{itemize}
\item [$\implies$] All edges are in $(V - S)$ or connect $(V - S)$ and $S$.
\item [$\implies$] $(V - S)$ is a vertex cover.
\end{itemize}
\linehack{}
Suppose $S$ is a vertex cover.
\begin{itemize}
\item [$\implies$] There are no edges with both endpoints in $(V - S)$.
\item [$\implies$] $(V - S)$ is an independent set.
\end{itemize}
\end{solution}
\vfill
\problem{}
Consider the following two problems:
\begin{itemize}
\item Given a graph $G$, determine if it has an independent set of size $\geq k$.
\item Given a graph $G$, determine if it has a vertex cover of size $\leq k$.
\end{itemize}
Show that these are equivalent. In other words, show that an algorithm that solves one can be used to solve the other.
\begin{solution}
This is a direct consequence of \ref{IndepCover}. You'll need to show that the size constraints are satisfied, but that's fairly easy to do.
\end{solution}
\vfill
\pagebreak

View File

@ -0,0 +1,200 @@
\section{Crosses (Bonus Problem)}
You are given an $n \times n$ grid. Some of its squares are white, and some are gray. Your goal is to place $n$ crosses on white cells so that each row and each column contains exactly one cross.
\vspace{2ex}
Here is an example of such a grid, including a possible solution.
\newcommand{\bx}[2]{
\draw[
line width = 1.5mm
]
(#1 + 0.3, #2 + 0.3) -- (#1 + 0.7, #2 + 0.7)
(#1 + 0.7, #2 + 0.3) -- (#1 + 0.3, #2 + 0.7);
}
\newcommand{\dk}[2]{
\draw[
line width = 0mm,
fill = gray
]
(#1, #2) --
(#1 + 1, #2) --
(#1 + 1, #2 + 1) --
(#1, #2 + 1);
}
\begin{center}
\begin{tikzpicture}[
scale = 0.8
]
% Dark squares
\dk{0}{2}
\dk{1}{0}
\dk{1}{1}
\dk{1}{2}
\dk{1}{4}
\dk{2}{2}
\dk{2}{4}
\dk{3}{0}
\dk{3}{1}
\dk{3}{3}
\dk{3}{4}
\dk{4}{3}
\dk{4}{1}
% Base grid
\foreach \x in {0,...,5} {
\draw[line width = 0.4mm]
(0, \x) -- (5, \x)
(\x, 0) -- (\x, 5);
}
% X marks
\bx{0}{4}
\bx{1}{3}
\bx{2}{1}
\bx{3}{2}
\bx{4}{0}
\end{tikzpicture}
\end{center}
\problem{}
Find a solution for the following grid.
\begin{center}
\begin{tikzpicture}[
scale = 1
]
% Dark squares
\dk{0}{2}
\dk{0}{3}
\dk{0}{6}
\dk{0}{7}
\dk{1}{0}
\dk{1}{1}
\dk{1}{4}
\dk{1}{5}
\dk{1}{6}
\dk{1}{7}
\dk{2}{0}
\dk{2}{1}
\dk{2}{3}
\dk{2}{4}
\dk{2}{5}
\dk{2}{6}
\dk{2}{7}
\dk{3}{1}
\dk{3}{2}
\dk{3}{3}
\dk{3}{4}
\dk{3}{5}
\dk{3}{6}
\dk{4}{0}
\dk{4}{1}
\dk{4}{2}
\dk{4}{3}
\dk{4}{6}
\dk{5}{1}
\dk{5}{4}
\dk{5}{5}
\dk{5}{6}
\dk{6}{0}
\dk{6}{1}
\dk{6}{2}
\dk{6}{3}
\dk{6}{4}
\dk{6}{5}
\dk{7}{0}
\dk{7}{4}
\dk{7}{6}
\dk{7}{7}
% Base grid
\foreach \x in {0,...,8} {
\draw[line width = 0.4mm]
(0, \x) -- (8, \x)
(\x, 0) -- (\x, 8);
}
\end{tikzpicture}
\end{center}
\pagebreak
\begin{solution}
\begin{center}
\begin{tikzpicture}[
scale = 0.6
]
% Dark squares
\dk{0}{2}
\dk{0}{3}
\dk{0}{6}
\dk{0}{7}
\dk{1}{0}
\dk{1}{1}
\dk{1}{4}
\dk{1}{5}
\dk{1}{6}
\dk{1}{7}
\dk{2}{0}
\dk{2}{1}
\dk{2}{3}
\dk{2}{4}
\dk{2}{5}
\dk{2}{6}
\dk{2}{7}
\dk{3}{1}
\dk{3}{2}
\dk{3}{3}
\dk{3}{4}
\dk{3}{5}
\dk{3}{6}
\dk{4}{0}
\dk{4}{1}
\dk{4}{2}
\dk{4}{3}
\dk{4}{6}
\dk{5}{1}
\dk{5}{4}
\dk{5}{5}
\dk{5}{6}
\dk{6}{0}
\dk{6}{1}
\dk{6}{2}
\dk{6}{3}
\dk{6}{4}
\dk{6}{5}
\dk{7}{0}
\dk{7}{4}
\dk{7}{6}
\dk{7}{7}
% Base grid
\foreach \x in {0,...,8} {
\draw[line width = 0.4mm]
(0, \x) -- (8, \x)
(\x, 0) -- (\x, 8);
}
% X marks
\bx{0}{5}
\bx{1}{3}
\bx{2}{2}
\bx{3}{7}
\bx{4}{4}
\bx{5}{0}
\bx{6}{6}
\bx{7}{1}
\end{tikzpicture}
\end{center}
\end{solution}
\problem{}
Turn this into a network flow problem.
\vfill
\pagebreak

View File

@ -1,5 +1,6 @@
\usetikzlibrary{arrows.meta}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{patterns}
% We put nodes in a separate layer, so we can
% slightly overlap with paths for a perfect fit