201 lines
2.7 KiB
TeX
201 lines
2.7 KiB
TeX
\section{Crosses (Bonus Problem)}
|
|
|
|
You are given an $n \times n$ grid. Some of its squares are white, and some are gray. Your goal is to place $n$ crosses on white cells so that each row and each column contains exactly one cross.
|
|
|
|
\vspace{2ex}
|
|
|
|
Here is an example of such a grid, including a possible solution.
|
|
|
|
\newcommand{\bx}[2]{
|
|
\draw[
|
|
line width = 1.5mm
|
|
]
|
|
(#1 + 0.3, #2 + 0.3) -- (#1 + 0.7, #2 + 0.7)
|
|
(#1 + 0.7, #2 + 0.3) -- (#1 + 0.3, #2 + 0.7);
|
|
}
|
|
|
|
\newcommand{\dk}[2]{
|
|
\draw[
|
|
line width = 0mm,
|
|
fill = gray
|
|
]
|
|
(#1, #2) --
|
|
(#1 + 1, #2) --
|
|
(#1 + 1, #2 + 1) --
|
|
(#1, #2 + 1);
|
|
}
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[
|
|
scale = 0.8
|
|
]
|
|
|
|
% Dark squares
|
|
\dk{0}{2}
|
|
\dk{1}{0}
|
|
\dk{1}{1}
|
|
\dk{1}{2}
|
|
\dk{1}{4}
|
|
\dk{2}{2}
|
|
\dk{2}{4}
|
|
\dk{3}{0}
|
|
\dk{3}{1}
|
|
\dk{3}{3}
|
|
\dk{3}{4}
|
|
\dk{4}{3}
|
|
\dk{4}{1}
|
|
|
|
|
|
% Base grid
|
|
\foreach \x in {0,...,5} {
|
|
\draw[line width = 0.4mm]
|
|
(0, \x) -- (5, \x)
|
|
(\x, 0) -- (\x, 5);
|
|
}
|
|
|
|
% X marks
|
|
\bx{0}{4}
|
|
\bx{1}{3}
|
|
\bx{2}{1}
|
|
\bx{3}{2}
|
|
\bx{4}{0}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\problem{}
|
|
Find a solution for the following grid.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[
|
|
scale = 1
|
|
]
|
|
% Dark squares
|
|
\dk{0}{2}
|
|
\dk{0}{3}
|
|
\dk{0}{6}
|
|
\dk{0}{7}
|
|
\dk{1}{0}
|
|
\dk{1}{1}
|
|
\dk{1}{4}
|
|
\dk{1}{5}
|
|
\dk{1}{6}
|
|
\dk{1}{7}
|
|
\dk{2}{0}
|
|
\dk{2}{1}
|
|
\dk{2}{3}
|
|
\dk{2}{4}
|
|
\dk{2}{5}
|
|
\dk{2}{6}
|
|
\dk{2}{7}
|
|
\dk{3}{1}
|
|
\dk{3}{2}
|
|
\dk{3}{3}
|
|
\dk{3}{4}
|
|
\dk{3}{5}
|
|
\dk{3}{6}
|
|
\dk{4}{0}
|
|
\dk{4}{1}
|
|
\dk{4}{2}
|
|
\dk{4}{3}
|
|
\dk{4}{6}
|
|
\dk{5}{1}
|
|
\dk{5}{4}
|
|
\dk{5}{5}
|
|
\dk{5}{6}
|
|
\dk{6}{0}
|
|
\dk{6}{1}
|
|
\dk{6}{2}
|
|
\dk{6}{3}
|
|
\dk{6}{4}
|
|
\dk{6}{5}
|
|
\dk{7}{0}
|
|
\dk{7}{4}
|
|
\dk{7}{6}
|
|
\dk{7}{7}
|
|
|
|
% Base grid
|
|
\foreach \x in {0,...,8} {
|
|
\draw[line width = 0.4mm]
|
|
(0, \x) -- (8, \x)
|
|
(\x, 0) -- (\x, 8);
|
|
}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
\pagebreak
|
|
|
|
\begin{solution}
|
|
\begin{center}
|
|
\begin{tikzpicture}[
|
|
scale = 0.6
|
|
]
|
|
% Dark squares
|
|
\dk{0}{2}
|
|
\dk{0}{3}
|
|
\dk{0}{6}
|
|
\dk{0}{7}
|
|
\dk{1}{0}
|
|
\dk{1}{1}
|
|
\dk{1}{4}
|
|
\dk{1}{5}
|
|
\dk{1}{6}
|
|
\dk{1}{7}
|
|
\dk{2}{0}
|
|
\dk{2}{1}
|
|
\dk{2}{3}
|
|
\dk{2}{4}
|
|
\dk{2}{5}
|
|
\dk{2}{6}
|
|
\dk{2}{7}
|
|
\dk{3}{1}
|
|
\dk{3}{2}
|
|
\dk{3}{3}
|
|
\dk{3}{4}
|
|
\dk{3}{5}
|
|
\dk{3}{6}
|
|
\dk{4}{0}
|
|
\dk{4}{1}
|
|
\dk{4}{2}
|
|
\dk{4}{3}
|
|
\dk{4}{6}
|
|
\dk{5}{1}
|
|
\dk{5}{4}
|
|
\dk{5}{5}
|
|
\dk{5}{6}
|
|
\dk{6}{0}
|
|
\dk{6}{1}
|
|
\dk{6}{2}
|
|
\dk{6}{3}
|
|
\dk{6}{4}
|
|
\dk{6}{5}
|
|
\dk{7}{0}
|
|
\dk{7}{4}
|
|
\dk{7}{6}
|
|
\dk{7}{7}
|
|
|
|
% Base grid
|
|
\foreach \x in {0,...,8} {
|
|
\draw[line width = 0.4mm]
|
|
(0, \x) -- (8, \x)
|
|
(\x, 0) -- (\x, 8);
|
|
}
|
|
|
|
% X marks
|
|
\bx{0}{5}
|
|
\bx{1}{3}
|
|
\bx{2}{2}
|
|
\bx{3}{7}
|
|
\bx{4}{4}
|
|
\bx{5}{0}
|
|
\bx{6}{6}
|
|
\bx{7}{1}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{solution}
|
|
|
|
\problem{}
|
|
Turn this into a network flow problem.
|
|
|
|
\vfill
|
|
\pagebreak
|