Finished last two sections
This commit is contained in:
parent
61b137e389
commit
9cec9430b8
@ -23,9 +23,7 @@
|
|||||||
\input{parts/02 residual}
|
\input{parts/02 residual}
|
||||||
\input{parts/03 fulkerson}
|
\input{parts/03 fulkerson}
|
||||||
\input{parts/04 applications}
|
\input{parts/04 applications}
|
||||||
|
\input{parts/05 reductions}
|
||||||
|
\input{parts/06 bonus}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
131
Advanced/Graph Algorithms/parts/05 reductions.tex
Executable file
131
Advanced/Graph Algorithms/parts/05 reductions.tex
Executable file
@ -0,0 +1,131 @@
|
|||||||
|
\section{Reductions}
|
||||||
|
|
||||||
|
\definition{Independent Sets}
|
||||||
|
An \textit{independent set} is a set of vertices\footnotemark{} in which no two are connected. $\{B, C, D, E\}$ form an independent set in the following graph:
|
||||||
|
|
||||||
|
\footnotetext{\say{Node} and \say{Vertex} are synonyms in graph theory.}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
node distance = 12mm,
|
||||||
|
hatch/.style = {
|
||||||
|
pattern=north west lines,
|
||||||
|
pattern color=gray
|
||||||
|
}
|
||||||
|
]
|
||||||
|
% Nodes
|
||||||
|
\begin{scope}[layer = nodes]
|
||||||
|
\node[main] (A) {$A$};
|
||||||
|
|
||||||
|
|
||||||
|
% Patterns are transparent.
|
||||||
|
% Fill nodes first so paths don't show through
|
||||||
|
\node[main, draw = white] (B1) [above left of = A] {$\phantom{B}$};
|
||||||
|
\node[main, draw = white] (C1) [below left of = A] {$\phantom{C}$};
|
||||||
|
\node[main, draw = white] (D1) [below right of = A] {$\phantom{D}$};
|
||||||
|
\node[main, draw = white] (E1) [above right of = A] {$\phantom{E}$};
|
||||||
|
|
||||||
|
\node[main, hatch] (B) [above left of = A] {$B$};
|
||||||
|
\node[main, hatch] (C) [below left of = A] {$C$};
|
||||||
|
\node[main, hatch] (D) [below right of = A] {$D$};
|
||||||
|
\node[main, hatch] (E) [above right of = A] {$E$};
|
||||||
|
\end{scope}
|
||||||
|
|
||||||
|
% Edges
|
||||||
|
\draw
|
||||||
|
(A) edge (B)
|
||||||
|
(A) edge (C)
|
||||||
|
(A) edge (D)
|
||||||
|
(A) edge (E)
|
||||||
|
;
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
|
||||||
|
\definition{Vertex Covers}
|
||||||
|
A \textit{vertex cover} is a set of vertices that includes at least one endpoint of each edge. $B$ and $D$ form a vertex cover of the following graph:
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
node distance = 12mm,
|
||||||
|
hatch/.style = {
|
||||||
|
pattern=north west lines,
|
||||||
|
pattern color=gray
|
||||||
|
}
|
||||||
|
]
|
||||||
|
% Nodes
|
||||||
|
\begin{scope}[layer = nodes]
|
||||||
|
\node[main] (A) {$A$};
|
||||||
|
|
||||||
|
% Patterns are transparent.
|
||||||
|
% Fill nodes first so paths don't show through
|
||||||
|
\node[main, draw = white] (B1) [right of = A] {$\phantom{B}$};
|
||||||
|
\node[main, hatch] (B) [right of = A] {$B$};
|
||||||
|
\node[main, draw = white] (D1) [below of = B] {$\phantom{D}$};
|
||||||
|
\node[main, hatch] (D) [below of = B] {$D$};
|
||||||
|
|
||||||
|
\node[main] (C) [right of = B] {$C$};
|
||||||
|
\node[main] (E) [right of = D] {$E$};
|
||||||
|
\end{scope}
|
||||||
|
|
||||||
|
% Edges
|
||||||
|
\draw
|
||||||
|
(A) edge (B)
|
||||||
|
(B) edge (C)
|
||||||
|
(B) edge (D)
|
||||||
|
(D) edge (E)
|
||||||
|
;
|
||||||
|
|
||||||
|
% Flow
|
||||||
|
\draw[path]
|
||||||
|
(B) -- (A)
|
||||||
|
(B) -- (C)
|
||||||
|
(B) -- (D)
|
||||||
|
(D) -- (E)
|
||||||
|
;
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}<IndepCover>
|
||||||
|
Let $G$ be a graph with a set of vertices $V$. \\
|
||||||
|
|
||||||
|
Show that $S \subset V$ is an independent set iff $(V - S)$ is a vertex cover. \\
|
||||||
|
|
||||||
|
\hint{$(V - S)$ is the set of elements in $V$ that are not in $S$.}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
Suppose $S$ is an independent set.
|
||||||
|
\begin{itemize}
|
||||||
|
\item [$\implies$] All edges are in $(V - S)$ or connect $(V - S)$ and $S$.
|
||||||
|
\item [$\implies$] $(V - S)$ is a vertex cover.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\linehack{}
|
||||||
|
|
||||||
|
Suppose $S$ is a vertex cover.
|
||||||
|
\begin{itemize}
|
||||||
|
\item [$\implies$] There are no edges with both endpoints in $(V - S)$.
|
||||||
|
\item [$\implies$] $(V - S)$ is an independent set.
|
||||||
|
\end{itemize}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Consider the following two problems:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Given a graph $G$, determine if it has an independent set of size $\geq k$.
|
||||||
|
\item Given a graph $G$, determine if it has a vertex cover of size $\leq k$.
|
||||||
|
\end{itemize}
|
||||||
|
Show that these are equivalent. In other words, show that an algorithm that solves one can be used to solve the other.
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
This is a direct consequence of \ref{IndepCover}. You'll need to show that the size constraints are satisfied, but that's fairly easy to do.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
200
Advanced/Graph Algorithms/parts/06 bonus.tex
Normal file
200
Advanced/Graph Algorithms/parts/06 bonus.tex
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
\section{Crosses (Bonus Problem)}
|
||||||
|
|
||||||
|
You are given an $n \times n$ grid. Some of its squares are white, and some are gray. Your goal is to place $n$ crosses on white cells so that each row and each column contains exactly one cross.
|
||||||
|
|
||||||
|
\vspace{2ex}
|
||||||
|
|
||||||
|
Here is an example of such a grid, including a possible solution.
|
||||||
|
|
||||||
|
\newcommand{\bx}[2]{
|
||||||
|
\draw[
|
||||||
|
line width = 1.5mm
|
||||||
|
]
|
||||||
|
(#1 + 0.3, #2 + 0.3) -- (#1 + 0.7, #2 + 0.7)
|
||||||
|
(#1 + 0.7, #2 + 0.3) -- (#1 + 0.3, #2 + 0.7);
|
||||||
|
}
|
||||||
|
|
||||||
|
\newcommand{\dk}[2]{
|
||||||
|
\draw[
|
||||||
|
line width = 0mm,
|
||||||
|
fill = gray
|
||||||
|
]
|
||||||
|
(#1, #2) --
|
||||||
|
(#1 + 1, #2) --
|
||||||
|
(#1 + 1, #2 + 1) --
|
||||||
|
(#1, #2 + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
scale = 0.8
|
||||||
|
]
|
||||||
|
|
||||||
|
% Dark squares
|
||||||
|
\dk{0}{2}
|
||||||
|
\dk{1}{0}
|
||||||
|
\dk{1}{1}
|
||||||
|
\dk{1}{2}
|
||||||
|
\dk{1}{4}
|
||||||
|
\dk{2}{2}
|
||||||
|
\dk{2}{4}
|
||||||
|
\dk{3}{0}
|
||||||
|
\dk{3}{1}
|
||||||
|
\dk{3}{3}
|
||||||
|
\dk{3}{4}
|
||||||
|
\dk{4}{3}
|
||||||
|
\dk{4}{1}
|
||||||
|
|
||||||
|
|
||||||
|
% Base grid
|
||||||
|
\foreach \x in {0,...,5} {
|
||||||
|
\draw[line width = 0.4mm]
|
||||||
|
(0, \x) -- (5, \x)
|
||||||
|
(\x, 0) -- (\x, 5);
|
||||||
|
}
|
||||||
|
|
||||||
|
% X marks
|
||||||
|
\bx{0}{4}
|
||||||
|
\bx{1}{3}
|
||||||
|
\bx{2}{1}
|
||||||
|
\bx{3}{2}
|
||||||
|
\bx{4}{0}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find a solution for the following grid.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
scale = 1
|
||||||
|
]
|
||||||
|
% Dark squares
|
||||||
|
\dk{0}{2}
|
||||||
|
\dk{0}{3}
|
||||||
|
\dk{0}{6}
|
||||||
|
\dk{0}{7}
|
||||||
|
\dk{1}{0}
|
||||||
|
\dk{1}{1}
|
||||||
|
\dk{1}{4}
|
||||||
|
\dk{1}{5}
|
||||||
|
\dk{1}{6}
|
||||||
|
\dk{1}{7}
|
||||||
|
\dk{2}{0}
|
||||||
|
\dk{2}{1}
|
||||||
|
\dk{2}{3}
|
||||||
|
\dk{2}{4}
|
||||||
|
\dk{2}{5}
|
||||||
|
\dk{2}{6}
|
||||||
|
\dk{2}{7}
|
||||||
|
\dk{3}{1}
|
||||||
|
\dk{3}{2}
|
||||||
|
\dk{3}{3}
|
||||||
|
\dk{3}{4}
|
||||||
|
\dk{3}{5}
|
||||||
|
\dk{3}{6}
|
||||||
|
\dk{4}{0}
|
||||||
|
\dk{4}{1}
|
||||||
|
\dk{4}{2}
|
||||||
|
\dk{4}{3}
|
||||||
|
\dk{4}{6}
|
||||||
|
\dk{5}{1}
|
||||||
|
\dk{5}{4}
|
||||||
|
\dk{5}{5}
|
||||||
|
\dk{5}{6}
|
||||||
|
\dk{6}{0}
|
||||||
|
\dk{6}{1}
|
||||||
|
\dk{6}{2}
|
||||||
|
\dk{6}{3}
|
||||||
|
\dk{6}{4}
|
||||||
|
\dk{6}{5}
|
||||||
|
\dk{7}{0}
|
||||||
|
\dk{7}{4}
|
||||||
|
\dk{7}{6}
|
||||||
|
\dk{7}{7}
|
||||||
|
|
||||||
|
% Base grid
|
||||||
|
\foreach \x in {0,...,8} {
|
||||||
|
\draw[line width = 0.4mm]
|
||||||
|
(0, \x) -- (8, \x)
|
||||||
|
(\x, 0) -- (\x, 8);
|
||||||
|
}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
scale = 0.6
|
||||||
|
]
|
||||||
|
% Dark squares
|
||||||
|
\dk{0}{2}
|
||||||
|
\dk{0}{3}
|
||||||
|
\dk{0}{6}
|
||||||
|
\dk{0}{7}
|
||||||
|
\dk{1}{0}
|
||||||
|
\dk{1}{1}
|
||||||
|
\dk{1}{4}
|
||||||
|
\dk{1}{5}
|
||||||
|
\dk{1}{6}
|
||||||
|
\dk{1}{7}
|
||||||
|
\dk{2}{0}
|
||||||
|
\dk{2}{1}
|
||||||
|
\dk{2}{3}
|
||||||
|
\dk{2}{4}
|
||||||
|
\dk{2}{5}
|
||||||
|
\dk{2}{6}
|
||||||
|
\dk{2}{7}
|
||||||
|
\dk{3}{1}
|
||||||
|
\dk{3}{2}
|
||||||
|
\dk{3}{3}
|
||||||
|
\dk{3}{4}
|
||||||
|
\dk{3}{5}
|
||||||
|
\dk{3}{6}
|
||||||
|
\dk{4}{0}
|
||||||
|
\dk{4}{1}
|
||||||
|
\dk{4}{2}
|
||||||
|
\dk{4}{3}
|
||||||
|
\dk{4}{6}
|
||||||
|
\dk{5}{1}
|
||||||
|
\dk{5}{4}
|
||||||
|
\dk{5}{5}
|
||||||
|
\dk{5}{6}
|
||||||
|
\dk{6}{0}
|
||||||
|
\dk{6}{1}
|
||||||
|
\dk{6}{2}
|
||||||
|
\dk{6}{3}
|
||||||
|
\dk{6}{4}
|
||||||
|
\dk{6}{5}
|
||||||
|
\dk{7}{0}
|
||||||
|
\dk{7}{4}
|
||||||
|
\dk{7}{6}
|
||||||
|
\dk{7}{7}
|
||||||
|
|
||||||
|
% Base grid
|
||||||
|
\foreach \x in {0,...,8} {
|
||||||
|
\draw[line width = 0.4mm]
|
||||||
|
(0, \x) -- (8, \x)
|
||||||
|
(\x, 0) -- (\x, 8);
|
||||||
|
}
|
||||||
|
|
||||||
|
% X marks
|
||||||
|
\bx{0}{5}
|
||||||
|
\bx{1}{3}
|
||||||
|
\bx{2}{2}
|
||||||
|
\bx{3}{7}
|
||||||
|
\bx{4}{4}
|
||||||
|
\bx{5}{0}
|
||||||
|
\bx{6}{6}
|
||||||
|
\bx{7}{1}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Turn this into a network flow problem.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
@ -1,5 +1,6 @@
|
|||||||
\usetikzlibrary{arrows.meta}
|
\usetikzlibrary{arrows.meta}
|
||||||
\usetikzlibrary{shapes.geometric}
|
\usetikzlibrary{shapes.geometric}
|
||||||
|
\usetikzlibrary{patterns}
|
||||||
|
|
||||||
% We put nodes in a separate layer, so we can
|
% We put nodes in a separate layer, so we can
|
||||||
% slightly overlap with paths for a perfect fit
|
% slightly overlap with paths for a perfect fit
|
||||||
|
Loading…
x
Reference in New Issue
Block a user