Edited Linear Algebra 101
This commit is contained in:
parent
60f74eb9b6
commit
9c3b88827f
@ -107,37 +107,42 @@
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
|
||||
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
|
||||
\section{Bonus}
|
||||
|
||||
\draw[->] (0,0) -- (1,2) node[right]{};
|
||||
\draw[->] (0,0) -- (3,0.5) node[above]{};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\begin{minipage}[t]{0.48\textwidth}\vspace{0pt}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\draw[dashed,->] (-0.5,0) -- (4,0) node[right]{};
|
||||
\draw[dashed,->] (0,-0.5) -- (0,3) node[above]{};
|
||||
\problem{}
|
||||
Show that the euclidean norm satisfies the triangle inequalty:
|
||||
$$
|
||||
||x+y|| \leq ||x|| + ||y||
|
||||
$$:
|
||||
|
||||
\draw[->] (0,0) -- (3,1) node[right]{};
|
||||
\draw[->] (0,0) -- (3,0.5) node[above]{};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the eucidean norm satisfies the reverse triangle inequality:
|
||||
|
||||
$$
|
||||
||x - y|| \geq |~||x|| - ||y||~|
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Prove the Cauchy-Schwartz inequality:
|
||||
|
||||
$$
|
||||
||\langle x, y \rangle|| = ||x||~||y||
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\end{document}
|
Loading…
x
Reference in New Issue
Block a user