diff --git a/Advanced/Linear Algebra 101/main.tex b/Advanced/Linear Algebra 101/main.tex index 0729ce7..ad3d890 100755 --- a/Advanced/Linear Algebra 101/main.tex +++ b/Advanced/Linear Algebra 101/main.tex @@ -107,37 +107,42 @@ \end{tikzpicture} \end{center} + \vfill + \problem{} + If $a$ and $b$ are perpendicular, what must $\langle a, b \rangle$ be? Is the converse true? \vfill \pagebreak - \begin{minipage}[t]{0.48\textwidth}\vspace{0pt} - \begin{center} - \begin{tikzpicture}[scale=1] - \draw[dashed,->] (-0.5,0) -- (4,0) node[right]{}; - \draw[dashed,->] (0,-0.5) -- (0,3) node[above]{}; + \section{Bonus} - \draw[->] (0,0) -- (1,2) node[right]{}; - \draw[->] (0,0) -- (3,0.5) node[above]{}; - \end{tikzpicture} - \end{center} - \end{minipage} - \begin{minipage}[t]{0.48\textwidth}\vspace{0pt} - \begin{center} - \begin{tikzpicture}[scale=1] - \draw[dashed,->] (-0.5,0) -- (4,0) node[right]{}; - \draw[dashed,->] (0,-0.5) -- (0,3) node[above]{}; + \problem{} + Show that the euclidean norm satisfies the triangle inequalty: + $$ + ||x+y|| \leq ||x|| + ||y|| + $$: - \draw[->] (0,0) -- (3,1) node[right]{}; - \draw[->] (0,0) -- (3,0.5) node[above]{}; - \end{tikzpicture} - \end{center} - \end{minipage} + \vfill + \problem{} + Show that the eucidean norm satisfies the reverse triangle inequality: + $$ + ||x - y|| \geq |~||x|| - ||y||~| + $$ + \vfill + + \problem{} + Prove the Cauchy-Schwartz inequality: + + $$ + ||\langle x, y \rangle|| = ||x||~||y|| + $$ + + \vfill \end{document} \ No newline at end of file