Merge branch 'stopping'
This commit is contained in:
commit
9a531509ca
26
Advanced/Stopping Problems/main.tex
Executable file
26
Advanced/Stopping Problems/main.tex
Executable file
@ -0,0 +1,26 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
\usepackage{units}
|
||||
\usepackage{mathtools} % for \coloneqq
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{\smallurl{}}
|
||||
\title{Stopping problems}
|
||||
\subtitle{Prepared by Mark on \today{}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/0 probability.tex}
|
||||
\input{parts/1 intro.tex}
|
||||
\input{parts/2 secretary.tex}
|
||||
\input{parts/3 orderstat.tex}
|
||||
|
||||
\end{document}
|
130
Advanced/Stopping Problems/parts/0 probability.tex
Normal file
130
Advanced/Stopping Problems/parts/0 probability.tex
Normal file
@ -0,0 +1,130 @@
|
||||
\section{Probability}
|
||||
|
||||
\definition{}
|
||||
A \textit{sample space} is a finite set $\Omega$. \par
|
||||
The elements of this set are called \textit{outcomes}. \par
|
||||
An \textit{event} is a set of outcomes (i.e, a subset of of $\Omega$).
|
||||
|
||||
\definition{}
|
||||
A \textit{probability function} over a sample space $\Omega$ is a function $\mathcal{P}: P(\Omega) \to (0, 1)$ \par
|
||||
that maps events to real numbers between 0 and 1. \par
|
||||
Any probability function has the following properties:
|
||||
\begin{itemize}
|
||||
\item $\mathcal{P}(\varnothing) = 0$
|
||||
\item $\mathcal{P}(\Omega) = 1$
|
||||
\item For events $A$ and $B$ where $A \cap B = \varnothing$, $\mathcal{P}(A \cup B) = \mathcal{P}(A) + \mathcal{P}(B)$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\problem{}<threecoins>
|
||||
Say we flip a fair coin three times. \par
|
||||
List all elements of the sample space $\Omega$ this experiment generates.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Using the same setup as \ref{threecoins}, find the following:
|
||||
\begin{itemize}
|
||||
\item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has at least two \say{heads}}\} ~)$
|
||||
\item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has an odd number of \say{heads}}\} ~)$
|
||||
\item $\mathcal{P}(~ \{\omega \in \Omega ~|~ \omega \text{ has at least one \say{tails}}\} ~)$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
%
|
||||
% MARK: Page
|
||||
%
|
||||
|
||||
|
||||
\definition{}
|
||||
Given a sample space $\Omega$ and a probability function $\mathcal{P}$, \par
|
||||
a \textit{random variable} is a function from $\Omega$ to a specified output set.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, given the three-coin-toss sample space
|
||||
$\Omega = \{
|
||||
\texttt{TTT},~ \texttt{TTH},~ \texttt{THT},~
|
||||
\texttt{THH},~ \texttt{HTT},~ \texttt{HTH},~
|
||||
\texttt{HHT},~ \texttt{HHH}
|
||||
\}$,
|
||||
We can define a random variable $\mathcal{H}$ as \say{the number of heads in a throw of three coins}. \par
|
||||
As a function, $\mathcal{H}$ maps values in $\Omega$ to values in $\mathbb{Z}^+_0$ and is defined as:
|
||||
\begin{itemize}
|
||||
\item $\mathcal{H}(\texttt{TTT}) = 0$
|
||||
\item $\mathcal{H}(\texttt{TTH}) = 1$
|
||||
\item $\mathcal{H}(\texttt{THT}) = 1$
|
||||
\item $\mathcal{H}(\texttt{THH}) = 2$
|
||||
\item ...and so on.
|
||||
\end{itemize}
|
||||
|
||||
\definition{}
|
||||
We can compute the probability that a random variable takes a certain value by computing the probability of
|
||||
the set of outcomes that produce that value. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, if we wanted to compute $\mathcal{P}(\mathcal{H} = 2)$, we would find
|
||||
$\mathcal{P}\bigl(\{\texttt{THH}, \texttt{HTH}, \texttt{HHT}\}\bigr)$.
|
||||
|
||||
|
||||
\problem{}
|
||||
Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ three times. \par
|
||||
What is $\mathcal{P}(\mathcal{H} = 1)$, with $\mathcal{H}$ defined as above? \par
|
||||
What is $\mathcal{P}(\mathcal{H} = 5)$?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Say we roll a fair six-sided die twice. \par
|
||||
Let $\mathcal{X}$ be a random variable measuring the sum of the two results. \par
|
||||
Find $\mathcal{P}(\mathcal{X} = x)$ for all $x$ in $\mathbb{Z}$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
%
|
||||
% MARK: Page
|
||||
%
|
||||
|
||||
|
||||
\definition{}
|
||||
Say we have a random variable $\mathcal{X}$ that produces outputs in $\mathbb{R}$. \par
|
||||
The \textit{expected value} of $\mathcal{X}$ is then defined as
|
||||
\begin{equation*}
|
||||
\mathcal{E}(\mathcal{X})
|
||||
~\coloneqq~ \sum_{x \in A}\Bigl(x \times \mathcal{P}\bigl(\mathcal{X} = x\bigr)\Bigr)
|
||||
~=~ \sum_{\omega \in \Omega}\Bigl(\mathcal{X}(\omega) \times \mathcal{P}(\omega)\Bigr)
|
||||
\end{equation*}
|
||||
That is, $\mathcal{E}(\mathcal{X})$ is the average of all possible outputs of $\mathcal{X}$ weighted by their probability.
|
||||
|
||||
\problem{}
|
||||
Say we flip a coin with $\mathcal{P}(\texttt{H}) = \nicefrac{1}{3}$ three times. \par
|
||||
Define $\mathcal{H}$ as the number of heads we see. \par
|
||||
Find $\mathcal{E}(\mathcal{H})$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables. \par
|
||||
Show that $\mathcal{E}(\mathcal{A} + \mathcal{B}) = \mathcal{E}(\mathcal{A}) + \mathcal{E}(\mathcal{B})$.
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{}
|
||||
Let $A$ and $B$ be events on a sample space $\Omega$. \par
|
||||
We say that $A$ and $B$ are \textit{independent} if $\mathcal{P}(A \cap B) = \mathcal{P}(A) + \mathcal{P}(B)$. \par
|
||||
Intuitively, events $A$ and $B$ are independent if the outcome of one does not affect the other.
|
||||
|
||||
\definition{}
|
||||
Let $\mathcal{A}$ and $\mathcal{B}$ be two random variables over $\Omega$. \par
|
||||
We say that $\mathcal{A}$ and $\mathcal{B}$ are independent if the events $\{\omega \in \Omega ~|~ \mathcal{A}(\omega) = a\}$
|
||||
and $\{\omega \in \Omega ~|~ \mathcal{B}(\omega) = b\}$ are independent for all $(a, b)$ that $\mathcal{A}$ and $\mathcal{B}$ can produce.
|
||||
|
||||
|
||||
|
||||
\pagebreak
|
67
Advanced/Stopping Problems/parts/1 intro.tex
Normal file
67
Advanced/Stopping Problems/parts/1 intro.tex
Normal file
@ -0,0 +1,67 @@
|
||||
\section{Introduction}
|
||||
|
||||
\generic{Setup:}
|
||||
Suppose we toss a 6-sided die $n$ times. \par
|
||||
It is easy to detect the first time we roll a 6. \par
|
||||
What should we do if we want to detect the \textit{last}?
|
||||
|
||||
\problem{}<lastl>
|
||||
Given $l \leq n$, what is the probability that the last $l$
|
||||
tosses of this die contain exactly one six? \par
|
||||
\hint{Start with small $l$.}
|
||||
|
||||
\begin{solution}
|
||||
$\mathcal{P}(\text{last } l \text{ tosses have exactly one 6}) = (\nicefrac{1}{6})(\nicefrac{5}{6})^l \times l$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
For what value of $l$ is the probability in \ref{lastl} maximal? \par
|
||||
The following table may help.
|
||||
|
||||
\begin{center}
|
||||
\begin{tabular}{|| c | c | c ||}
|
||||
\hline
|
||||
\rule{0pt}{3.5mm} % Bonus height for exponent
|
||||
$l$ & $(\nicefrac{5}{6})^l$ & $(\nicefrac{1}{6})(\nicefrac{5}{6})^l$ \\
|
||||
\hline\hline
|
||||
1 & 0.83 & 0.133 \\
|
||||
\hline
|
||||
2 & 0.69 & 0.115 \\
|
||||
\hline
|
||||
3 & 0.57 & 0.095 \\
|
||||
\hline
|
||||
4 & 0.48 & 0.089 \\
|
||||
\hline
|
||||
5 & 0.40 & 0.067 \\
|
||||
\hline
|
||||
6 & 0.33 & 0.055 \\
|
||||
\hline
|
||||
7 & 0.27 & 0.045 \\
|
||||
\hline
|
||||
8 & 0.23 & 0.038 \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
$(\nicefrac{1}{6})(\nicefrac{5}{6})^l \times l$ is maximal at $x = 5.48$, so $l = 5$. \par
|
||||
$l = 6$ is close enough.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Finish your solution: \par
|
||||
In $n$ rolls of a six-sided die, what strategy maximizes
|
||||
our chance of detecting the last $6$ that is rolled? \par
|
||||
What is the probability of our guess being right?
|
||||
|
||||
\begin{solution}
|
||||
Whether $l = 5$, $5.4$, or $6$, the probability of success rounds to $0.40$.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
276
Advanced/Stopping Problems/parts/2 secretary.tex
Normal file
276
Advanced/Stopping Problems/parts/2 secretary.tex
Normal file
@ -0,0 +1,276 @@
|
||||
\section{The Secretary Problem}
|
||||
|
||||
\definition{The secretary problem}
|
||||
Say we need to hire a secretary. We have exactly one position to fill,
|
||||
and we must fill it with one of $n$ applicants. These $n$ applicants,
|
||||
if put together, can be ranked unambiguously from \say{best} to \say{worst}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We interview applicants in a random order, one at a time. \par
|
||||
At the end of each interview, we either reject the applicant (and move on to the next one), \par
|
||||
or select the applicant (which fills the position and ends the process).
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Each applicant is interviewed at most once---we cannot return to an applicant we've rejected. \par
|
||||
In addition, we cannot reject the final applicant, as doing so will leave us without a secretary.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For a given $n$, we would like to maximize our probability of selecting the best applicant. \par
|
||||
This is the only metric we care about---we do not try to maximize the rank of our applicant. \par
|
||||
Hiring the second-best applicant is no better than hiring the worst.
|
||||
|
||||
\problem{}
|
||||
If $n = 1$, what is the best hiring strategy, and what is the probability that we hire the best applicant?
|
||||
|
||||
\begin{solution}
|
||||
This is trivial. Hire the first applicant, she's always the best.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
If $n = 2$, what is the best hiring strategy, and what is the probability that we hire the best applicant? \par
|
||||
Is this different than the probability of hiring the best applicant at random?
|
||||
|
||||
\begin{solution}
|
||||
There are two strategies:
|
||||
\begin{itemize}
|
||||
\item hire the first
|
||||
\item hire the second
|
||||
\end{itemize}
|
||||
|
||||
Both are equivalent to the random strategy.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Intuitively, the fact that a strategy can't help us makes sense: \par
|
||||
When we're looking at the first applicant, we have no information; \par
|
||||
when we're looking at the second, we have no agency (i.e, we \textit{must} hire).
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
If $n = 3$, what is the probability of hiring the best applicant at random? \par
|
||||
Come up with a strategy that produces better odds.
|
||||
|
||||
\begin{solution}
|
||||
Once we have three applicants, we can make progress.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The remark from the previous solution still holds: \par
|
||||
When we're looking at the first applicant, we have no information; \par
|
||||
when we're looking at the second, we have no choices.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
So, let's make our decision at the second candidate. \par
|
||||
If we hire only when the second candidate is better than the first, \par
|
||||
we end up hiring the best candidate exactly half the time.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This can be verified by checking all six cases.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
%
|
||||
% MARK: Page
|
||||
%
|
||||
|
||||
|
||||
\problem{}<bestyet>
|
||||
Should we ever consider hiring a candidate that \textit{isn't} the best we've seen so far? \par
|
||||
Why or why not? \hint{Read the problem again.}
|
||||
|
||||
\begin{solution}
|
||||
No! A candidate that isn't the best yet cannot be the best overall! \par
|
||||
Remember---this problem is only interested in hiring the \textit{absolute best} candidate. \par
|
||||
Our reward is zero in all other cases.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\remark{}
|
||||
\ref{bestyet} implies that we should automatically reject any applicant that isn't
|
||||
the best we've seen. We can take advantage of this fact to restrict the types of
|
||||
strategies we consider.
|
||||
|
||||
\remark{}
|
||||
Let $B_x$ be the event \say{the $x^\text{th}$ applicant is better than all previous applicants,} \par
|
||||
and recall that we only know the \textit{relative} ranks of our applicants: \par
|
||||
given two candidates, we know \textit{which} is better, but not \textit{by how much}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Therefore, the results of past events cannot provide information about future $B_x$. \par
|
||||
All events $B_x$ are independent.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We can therefore ignore any strategy that depends on the outcomes of individual $B_x$.
|
||||
Given this realization, we are left with only one kind of strategy: \par
|
||||
We blindly reject the first $(k - 1)$ applicants, then select the next \say{best-yet} applicant. \par
|
||||
All we need to do now is pick the optimal $k$.
|
||||
|
||||
\problem{}
|
||||
Consider the secretary problem with a given $n$. \par
|
||||
What are the probabilities of each $B_x$?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}<seca>
|
||||
What is the probability that the $n^\text{th}$ applicant is the overall best applicant?
|
||||
|
||||
\begin{solution}
|
||||
All positions are equally likely. $\nicefrac{1}{n}$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
%
|
||||
% MARK: Page
|
||||
%
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<secb>
|
||||
Given that the $x^\textit{th}$ applicant is the overall best, what is the probability of hiring this applicant \par
|
||||
if we use the \say{look-then-leap} strategy detailed above? \par
|
||||
\hint{
|
||||
Under what conditions would we \textit{not} hire this applicant? \par
|
||||
This probability depends on $k$ and $x$.
|
||||
}
|
||||
|
||||
\begin{solution}
|
||||
Say that the $x^\text{th}$ applicant is the best overall. If we do not hire this applicant,
|
||||
we must have hired a candidate that came before them. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
What is the probability of this? We saw $x-1$ applicants before the $x^\text{th}$. \par
|
||||
If we hired one of them, the best of those initial $x-1$ candidates did \textit{not} fall
|
||||
into the initial $k-1$ applicants we rejected.
|
||||
\note{(This is again verified by contradiction: if the best of the first $x-1$ applicants
|
||||
\textit{was} within the first $k-1$, we would hire the $x^\text{th}$)}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
There are $x-1$ positions to place the best of the first $x-1$ candidates, \par
|
||||
and $k-1$ of these positions are initially rejected. \par
|
||||
Thus, the probability of the best of the first $x-1$ applicants being rejected is $\frac{k-1}{x-1}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Unraveling our previous logic, we find that the probability we are interested in is also $\frac{k-1}{x-1}$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<phisubn>
|
||||
Consider the secretary problem with $n$ applicants. \par
|
||||
If we reject the first $k$ applicants and hire the first \say{best-yet} applicant we encounter, \par
|
||||
what is the probability that we select the best candidate? \par
|
||||
Call this probability $\phi_n(k)$.
|
||||
|
||||
\begin{solution}
|
||||
Using \ref{seca} and \ref{secb}, this is straightfoward:
|
||||
\[
|
||||
\phi_n(k)
|
||||
= \sum_{x = k}^{n}\left( \frac{1}{n} \times \frac{k-1}{x-1} \right)
|
||||
\]
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find the $k$ that maximizes $\phi_n(k)$ for $n$ in $\{1, 2, 3, 4, 5\}$.
|
||||
|
||||
\begin{solution}
|
||||
Brute force. We already know that $\phi_1(1) = 1.0$ and $\phi_2(1) = \phi_3(2) = 0.5$. \par
|
||||
The maximal value of $\phi_4$ is $\phi_4(2) = 0.46$, and of $\phi_5$ is $\phi_5(3) = 0.43$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
%
|
||||
% MARK: Page
|
||||
%
|
||||
|
||||
\problem{}
|
||||
Let $r = \frac{k-1}{n}$, the fraction of applicants we reject. Show that
|
||||
\begin{equation*}
|
||||
\phi_n(k)
|
||||
= r \sum_{x = k}^{n}\left( \frac{1}{x-1} \right)
|
||||
\end{equation*}
|
||||
|
||||
\begin{solution}
|
||||
This is easy.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
With a bit of faily unpleasant calculus, we can show that the following is true for large $n$:
|
||||
\begin{equation*}
|
||||
\sum_{x=k}^{n}\frac{1}{x-1}
|
||||
~\approx~ \text{ln}\Bigl(\frac{n}{k}\Bigr)
|
||||
\end{equation*}
|
||||
Use this fact to find an approximation of $\phi_n(k)$ at large $n$ in terms of $r$. \par
|
||||
\hint{If $n$ is big, $\frac{k-1}{n} \approx \frac{k}{n}$.}
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\phi_n(k)
|
||||
~=~ r \sum_{x = k}^{n}\left( \frac{1}{x-1} \right)
|
||||
~\approx~ r \times \text{ln}\left(\frac{n}{k}\right)
|
||||
~=~ -r \times \text{ln}\left(\frac{k}{n}\right)
|
||||
~\approx~ -r \times \text{ln}(r)
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find the $r$ that maximizes $\underset{n \rightarrow \infty}{\text{lim}} \phi_n$. \par
|
||||
Also, find the value of $\phi_n$ at this point. \par
|
||||
\note{If you aren't familiar with calculus, ask an instructor for help.}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
Use the usual calculus tricks:
|
||||
\begin{equation*}
|
||||
\frac{d}{dr} \bigl( -r \times \text{ln}(r) \bigr)
|
||||
= -1 - \text{ln}(r)
|
||||
\end{equation*}
|
||||
|
||||
Which is zero at $r = e^{-1}$. The value of $ -r \times \text{ln}(r)$ at this point is also $\frac{1}{e}$.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
Thus, the \say{look-then-leap} strategy with $r = e^{-1}$ should select the best candidate about $e^{-1} = 37\%$ of the time,
|
||||
\textit{regardless of $n$.} Our probability of success does not change as $n$ gets larger! \par
|
||||
\note{Recall that the random strategy succeeds with probability $\nicefrac{1}{n}$. \par
|
||||
That is, it quickly becomes small as $n$ gets large.}
|
||||
|
||||
\pagebreak
|
204
Advanced/Stopping Problems/parts/3 orderstat.tex
Normal file
204
Advanced/Stopping Problems/parts/3 orderstat.tex
Normal file
@ -0,0 +1,204 @@
|
||||
\section{Another Secretary Problem}
|
||||
|
||||
As you may have already noticed, the secretary problem we discussed in the previous section
|
||||
is somewhat disconnected from reality. Under what circumstances would one only be satisfied
|
||||
with the \textit{absolute best} candidate? It may make more sense to maximize the average rank
|
||||
of the candidate we hire, rather than the probability of selecting the best. This is the problem
|
||||
we'll attempt to solve next.
|
||||
|
||||
|
||||
\definition{}
|
||||
The problem we're solving is summarized below.
|
||||
Note that this is nearly identical to the classical secretary problem in the previous
|
||||
section---the only thing that has changed is the goal.
|
||||
\begin{itemize}
|
||||
\item We have exactly one position to fill, and we must fill it with one of $n$ applicants.
|
||||
\item These $n$ applicants, if put together, can be ranked unambiguously from \say{best} to \say{worst}.
|
||||
\item We interview applicants in a random order, one at a time.
|
||||
\item After each interview, we either reject or select the applicant.
|
||||
\item We cannot return to an applicant we've rejected.
|
||||
\item The process ends once we select an applicant.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\item Our goal is to maximize the rank of the applicant we hire.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\definition{}<mod>
|
||||
Just like before, we need to restate this problem in the language of probability. \par
|
||||
To do this, we'll say that each candidate has a \textit{quality} rating in $[0, 1]$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Our series of applicants then becomes a series of random variables $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_n$, \par
|
||||
where each $\mathcal{X}_i$ is drawn uniformly from $[0, 1]$.
|
||||
|
||||
\problem{}<notsatisfy>
|
||||
The modification in \ref{mod} doesn't fully satisfy the constraints of the secretary problem. \par
|
||||
Why not?
|
||||
|
||||
\begin{solution}
|
||||
If we observe $\mathcal{X}_i$ directly, we obtain \textit{absolute} scores. \par
|
||||
This is more information than the secretary problem allows us to have---we can know which of
|
||||
two candidates is better, but \textit{not by how much}.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
Ignore this issue for now. We'll return to it later.
|
||||
|
||||
\problem{}
|
||||
Let $\mathcal{X}$ be a random variable uniformly distributed over $[0, 1]$. \par
|
||||
Given a real number $x$, what is the probability that $\mathcal{P}(\mathcal{X} \leq x)$?
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\mathcal{P}(\mathcal{X} \leq x) =
|
||||
\begin{cases}
|
||||
0 & x \leq 0 \\
|
||||
x & 0 < x < 1 \\
|
||||
1 & \text{otherwise}
|
||||
\end{cases}
|
||||
\end{equation*}
|
||||
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Say we have five random variables $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_5$. \par
|
||||
Given some $y$, what is the probability that all five $\mathcal{X}_i$ are smaller than $y$?
|
||||
|
||||
\begin{solution}
|
||||
Naturally, this is $\mathcal{P}(\mathcal{X} \leq y)^5$, which is $y^5$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
%
|
||||
% MARK: Page
|
||||
%
|
||||
|
||||
|
||||
\definition{}
|
||||
Say we have a random variable $\mathcal{X}$ which we observe $n$ times. \note{(for example, we repeatedly roll a die)}
|
||||
We'll arrange these observations in increasing order, labeled $x_1 < x_2 < ... < x_n$. \par
|
||||
Under this definition, $x_i$ is called the \textit{$i^\text{th}$ order statistic}---the $i^\text{th}$ smallest sample of $\mathcal{X}$.
|
||||
a
|
||||
|
||||
\problem{}<ostatone>
|
||||
Say we have a random variable $\mathcal{X}$ uniformly distributed on $[0, 1]$, of which we take $5$ observations. \par
|
||||
Given some $y$, what is the probability that $x_5 < y$? How about $x_4 <y $?
|
||||
|
||||
\begin{solution}
|
||||
$x_5 < y$: ~This is a restatement of the previous problem.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$x_4 < y$: ~We need 4 measurements to be smaller,
|
||||
and one to be larger. Accounting for permutations, we get
|
||||
$
|
||||
5\mathcal{P}(\mathcal{X} \leq y)^4
|
||||
\mathcal{P}(\mathcal{X} > y)
|
||||
+
|
||||
\mathcal{P}(\mathcal{X} \leq y)^5
|
||||
$, which is $5y^4(1-y) + y^5$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Consider the same setup as \ref{ostatone}, but with $n$ measurements. \par
|
||||
What is the probability that $x_i < y$ for a given $y$?
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\mathcal{P}(x_i < y)
|
||||
~=~
|
||||
\sum_{j=i}^{n}
|
||||
\binom{n}{j} \times
|
||||
y^j
|
||||
(1-y)^{n-j}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\remark{}
|
||||
The expected value of the $i^\text{th}$ order statistic on $n$ samples of the uniform distribution is below.
|
||||
\begin{equation*}
|
||||
\mathcal{E}(x_i) = \frac{i}{n+1}
|
||||
\end{equation*}
|
||||
We do not have the tools to derive this yet.
|
||||
|
||||
\pagebreak
|
||||
|
||||
%
|
||||
% MARK: Page
|
||||
%
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
Recall \ref{notsatisfy}. We need one more modification. \par
|
||||
In order to preserve the constraints of the problem, we will not be allowed to observe $\mathcal{X}_i$ directly. \par
|
||||
Instead, we'll be given an \say{indicator} $\mathcal{I}_i$ for each $\mathcal{X}_i$, which produces values in $\{0, 1\}$. \par
|
||||
If the value we observe when interviewing $\mathcal{X}_i$ is the best we've seen so far, $\mathcal{I}_i$ will produce $1$. \par
|
||||
If it isn't, $\mathcal{I}_i$ produces $0$.
|
||||
|
||||
\problem{}
|
||||
Given a secretary problem with $n$ applicants, what is $\mathcal{E}(\mathcal{I}_i)$?
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\mathcal{E}(\mathcal{I}_i) = \frac{1}{i}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What is $\mathcal{E}(\mathcal{X}_i ~|~ \mathcal{I}_i = 1)$? \par
|
||||
In other words, what is the expected value of $\mathcal{X}_i$ given that \par
|
||||
we know this candidate is the best we've seen so far?
|
||||
|
||||
\begin{solution}
|
||||
This is simply the expected value of the $i^\text{th}$ order statistic on $i$ samples:
|
||||
\begin{equation*}
|
||||
\mathcal{E}(\mathcal{X}_i ~|~ \mathcal{I}_i = 1) = \frac{i}{i+1}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
In the previous section, we found that the optimal strategy for the classical secretary problem is to
|
||||
reject the first $e^{-1} \times n$ candidates, and select the next \say{best-yet} candidate we see. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
How effective is this strategy for the ranked secretary problem? \par
|
||||
Find the expected rank of the applicant we select using this strategy.
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Assuming we use the same kind of strategy as before (reject $k$, select the next \say{best-yet} candidate), \par
|
||||
show that $k = \sqrt{n}$ optimizes the expected rank of the candidate we select.
|
||||
|
||||
\begin{solution}
|
||||
This is a difficult bonus problem. see
|
||||
\texttt{Neil Bearden, J. (2006). A new secretary problem with rank-based selection and cardinal payoffs.}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
81
Advanced/Stopping Problems/parts/4 again.tex
Normal file
81
Advanced/Stopping Problems/parts/4 again.tex
Normal file
@ -0,0 +1,81 @@
|
||||
\section{The Secretary, Again}
|
||||
|
||||
Now, let's solve the secretary problem as as a stopping rule problem. \par
|
||||
The first thing we need to do is re-write it into the form we discussed in the previous section. \par
|
||||
Namely, we need...
|
||||
\begin{itemize}
|
||||
\item A sequence of random variables $\mathcal{X}_1, \mathcal{X}_2, ..., \mathcal{X}_t$
|
||||
\item A sequence of reward functions $y_0, y_1(\sigma_1), ..., y_t(\sigma_t)$.
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For convenience, I've summarized the secretary problem below:
|
||||
\begin{itemize}
|
||||
\item We have exactly one position to fill, and we must fill it with one of $n$ applicants.
|
||||
\item These $n$ applicants, if put together, can be ranked unambiguously from \say{best} to \say{worst}.
|
||||
\item We interview applicants in a random order, one at a time.
|
||||
\item After each interview, we reject the applicant and move on, \par
|
||||
or select the applicant and end the process.
|
||||
\item We cannot return to an applicant we've rejected.
|
||||
\item Our goal is to select the \textit{overall best} applicant.
|
||||
\end{itemize}
|
||||
|
||||
\definition{}
|
||||
First, we'll define a sequence of $\mathcal{X}_i$ that fits this problem. \par
|
||||
Each $\mathcal{X}_i$ will gives us the \textit{relative rank} of each applicant. \par
|
||||
For example, if $\mathcal{X}_i = 1$, the $i^\text{th}$ applicant is the best of the first $i$. \par
|
||||
If $\mathcal{X}_i = 3$, two applicants better than $i$ came before $i$.
|
||||
|
||||
\problem{}
|
||||
What values can $\mathcal{X}_1$ take, and what are their probabilities? \par
|
||||
How about $\mathcal{X}_2$, $\mathcal{X}_3$, and $\mathcal{X}_4$?
|
||||
|
||||
\vfill
|
||||
|
||||
\remark{}
|
||||
Now we need to define $y_n(\sigma_n)$. Intuitively, it may make sense to set $y_n = 1$ if the $n^\text{th}$
|
||||
applicant is the best, and $y_n = 0$ otherwise---but this doesn't work.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
As defined in the previous section, $y_n$ can only depend on $\sigma_n = [x_1, x_2, ..., x_n]$, the previous $n$ observations.
|
||||
We cannot define $y_n$ as specified above because, having seen $\sigma_n$, we \textit{cannot} know whether or not the $n^\text{th}$
|
||||
applicant is the best.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
To work around this, we'll define our reward for selecting the $n^\text{th}$ applicant as the \textit{probability}
|
||||
that this applicant is the best.
|
||||
|
||||
\problem{}
|
||||
Define $y_n$.
|
||||
|
||||
\begin{solution}
|
||||
\begin{itemize}
|
||||
\item An applicant should only be selected if $\mathcal{X}_i = 1$
|
||||
\item if we accept an the $j^\text{th}$ applicant, the probability we select the absolute best is equal to \par
|
||||
the probability that the best of the first $j$ candidates is the best overall. \par
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
This is just the probability that the best candidate overall appears among the first $j$, \par
|
||||
and is thus $\nicefrac{j}{n}$.
|
||||
\end{itemize}
|
||||
|
||||
So,
|
||||
\begin{equation*}
|
||||
y_j(\sigma_j) =
|
||||
\begin{cases}
|
||||
\nicefrac{j}{n} & x_j = 1 \\
|
||||
0 & \text{otherwise}
|
||||
\end{cases}
|
||||
\end{equation*}
|
||||
|
||||
\vspace{2mm}
|
||||
Note that $y_0 = 0$, and that $y_n$ depends only on $x_n$.
|
||||
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -722,11 +722,10 @@
|
||||
% Misc helper commands %
|
||||
% -------------------- %
|
||||
|
||||
% Inline note
|
||||
\NewDocumentCommand{\ilnote}{ +m }{\begingroup\color{gray}#1\endgroup}
|
||||
|
||||
\NewDocumentCommand{\note}{ d[] +m }{
|
||||
\IfNoValueTF{#1}{%
|
||||
\begingroup\color{gray}#2\endgroup%
|
||||
}{%
|
||||
\begingroup\color{gray}\textit{#1:} #2\endgroup%
|
||||
}\par
|
||||
\IfNoValueTF{#1}{\ilnote{#2}}{\ilnote{\textit{#1:} #2}}\par
|
||||
}
|
||||
\long\def\hint#1{\note[Hint]{#1}}
|
||||
|
Loading…
x
Reference in New Issue
Block a user