Edits
This commit is contained in:
parent
3b197b0759
commit
90fd1e6ee1
@ -73,13 +73,23 @@ Evaluate the following.
|
|||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $(T \land F) \lor T$
|
\item $(T \land F) \lor T$
|
||||||
\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
|
\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
|
||||||
\item $A \rightarrow T$ for any $A$
|
\item $(F \rightarrow T) \rightarrow (\lnot F \lor \lnot T)$
|
||||||
\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A,B$
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Evaluate the following.
|
||||||
|
\begin{itemize}
|
||||||
|
\item $A \rightarrow T$ for any $A$
|
||||||
|
\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A, B$
|
||||||
|
\item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
||||||
\hint{Use a truth table}
|
\hint{Use a truth table}
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
\section{Structures}
|
\section{Structures}
|
||||||
|
|
||||||
\definition{}<def:language>
|
\definition{}<def:language>
|
||||||
A \textit{language} is a set of meaningless symbols. Here are a few examples:
|
A \textit{language} is a set of meaningless objects. Here are a few examples:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\{a, b, ..., z\}$
|
\item $\{a, b, ..., z\}$
|
||||||
\item $\{0, 1\}$
|
\item $\{0, 1\}$
|
||||||
@ -12,30 +12,27 @@ Every language comes with the equality check $=$, which checks if two elements a
|
|||||||
|
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
A \textit{structure} over a language $\mathcal{L}$ consists of three sets:
|
A \textit{structure} over a language $\mathcal{L}$ consists of a set of symbols. \par
|
||||||
\begin{itemize}
|
The purpose of a structure is to give a language meaning.
|
||||||
\item A set of \textit{constant symbols} $\mathcal{C}$ \par
|
|
||||||
Constant symbols let us specify specific elements of our language. \par
|
|
||||||
$\mathcal{C}$ must thus be a subset of $\mathcal{L}$.
|
|
||||||
\vspace{3mm}
|
|
||||||
|
|
||||||
|
|
||||||
\item A set of \textit{function symbols} $\mathcal{F}$ \par
|
|
||||||
Function symbols let us navigate between elements of our language. \par
|
|
||||||
$+$, $-$ are functions, as are $\sin{x}$, $\cos{x}$, and $\sqrt{x}$ \par
|
|
||||||
Functions take inputs in $\mathcal{L}$ and produce outputs in $\mathcal{L}$.
|
|
||||||
\vspace{3mm}
|
|
||||||
|
|
||||||
\item A set of \textit{relation symbols} $\mathcal{R}$ \par
|
|
||||||
Relation symbols let us compare elements of our language. \par
|
|
||||||
You are already familiar with this concept: $>$, $<$, and $\leq$ are relation symbols. \par
|
|
||||||
$=$ is \textbf{not} a relational symbol. Why? \hint{See \ref{def:language}}
|
|
||||||
|
|
||||||
\end{itemize}
|
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
The purpose of a structure is to give a language meaning. This is best explained by example.
|
Symbols generally come in three types:
|
||||||
|
\begin{itemize}
|
||||||
|
\item Constant symbols, which let us specify specific elements of our language. \par
|
||||||
|
Examples: $0, 1, \frac{1}{2}, \pi$
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
\item Function symbols, which let us navigate between elements of our language. \par
|
||||||
|
Examples: $+, \times, \sin{x}, \sqrt{x}$
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
\item Relation symbols, which let us compare elements of our language. \par
|
||||||
|
Examples: $<, >, \leq, \geq$ \par
|
||||||
|
The symbol $=$ is \textbf{not} a relation. Why? \hint{See \ref{def:language}}
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
\vspace{3mm}
|
\vspace{3mm}
|
||||||
|
|
||||||
@ -45,25 +42,21 @@ The purpose of a structure is to give a language meaning. This is best explained
|
|||||||
|
|
||||||
The first structure we'll look at is the following:
|
The first structure we'll look at is the following:
|
||||||
$$
|
$$
|
||||||
\Bigl(
|
\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)
|
||||||
\mathcal{L} ~\big|~ \{\mathcal{C}, ~ \mathcal{F}, ~ \mathcal{R}\}
|
|
||||||
\Bigr)
|
|
||||||
=
|
|
||||||
\Bigl( \mathbb{Z} ~\big|~ \{0, 1, ~ +, -, ~ <\} \Bigr)
|
|
||||||
$$
|
$$
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
This is a structure over $\mathbb{Z}$ with the following symbols:
|
This is a structure over $\mathbb{Z}$ with the following symbols:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\mathcal{C} = \{0, 1\}$ \tab \note{(constants)}
|
\item Constants: \tab $\{0, 1\}$
|
||||||
\item $\mathcal{F} = \{+, -\}$ \tab \note{(functions)}
|
\item Functions: \tab $\{+, -\}$
|
||||||
\item $\mathcal{R} = \{<\}$ \tab \note{(relations)}
|
\item Relations: \tab $\{<\}$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
Let's look at $\mathcal{C}$, our set of constant symbols. The only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools the structure offers.
|
If you look at our set of constant symbols, you'll see that the only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools the structure offers.
|
||||||
|
|
||||||
\vspace{1mm}
|
\vspace{1mm}
|
||||||
|
|
||||||
@ -104,7 +97,7 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi
|
|||||||
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$}
|
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$}
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
Yes! $-2$ no longer exists, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
|
$-2 \notin \mathbb{Z}^+$, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
@ -122,10 +115,10 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr
|
|||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
What is definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
|
What numbers are definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
All powers of two, positive and negative.
|
With the tools we have so far, we can only define powers of two, positive and negative.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
@ -58,8 +58,41 @@ Which are true in $\mathbb{R}^+_0$? \par
|
|||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Define $\forall$ using logical symbols and $\exists$
|
Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Define $3$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Let $\varphi(x)$ be a formula. \par
|
||||||
|
Define $(\forall x ~ \varphi(x))$ using logical symbols and $\exists$.
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
$\Bigl(\forall x ~ \varphi(x)\Bigr)$ is true iff $\lnot \Bigl(\exists x ~ \lnot \varphi(x) \Bigr)$ is true.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
|
@ -10,6 +10,13 @@ $$
|
|||||||
$$
|
$$
|
||||||
This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.}
|
This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.}
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
For example, take the formula $\varphi(x) = \exists y ~ (y + y = x)$. \par
|
||||||
|
The set of all even integers can then be written
|
||||||
|
$$
|
||||||
|
\{ x ~|~ \varphi(x) \} = \{ x ~|~ \exists y ~ (y + y = x) \}
|
||||||
|
$$
|
||||||
|
|
||||||
\definition{Definable Sets}
|
\definition{Definable Sets}
|
||||||
Let $S$ be a structure over a language $\mathcal{L}$. \par
|
Let $S$ be a structure over a language $\mathcal{L}$. \par
|
||||||
@ -30,15 +37,6 @@ Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\
|
|||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Define the set of rational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
|
||||||
Define the set of irrational numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
|
||||||
|
|
||||||
\vfill
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
|
Define $\{0\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
|
||||||
@ -53,7 +51,22 @@ Define $\{1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{>\} \Bigr)$
|
|||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ i, ~ \text{real}(z), \times\} \Bigr)$ \par
|
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)\} \Bigr)$ \par
|
||||||
|
|
||||||
|
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
|
||||||
|
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
$\Bigl\{ x ~\bigl|~ \lnot (\text{real}(i \times x) = 0) \Bigr\}$
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Define the set of integers in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par
|
||||||
|
|
||||||
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
|
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
|
||||||
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
|
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
|
||||||
|
|
||||||
@ -63,21 +76,17 @@ Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ i, ~ \tex
|
|||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\theorem{Lagrange's Four Square Theorem}
|
||||||
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{0, ~ \text{real}(z), \times\} \Bigr)$ \par
|
Every natural number may be written as a sum of four integer squares.
|
||||||
|
|
||||||
\begin{solution}
|
\problem{}
|
||||||
$\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(y) = 0 \rightarrow \lnot \bigl[ \text{real}(x \times y) = 0 \bigr] \Bigr) \Biggr\}$
|
Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Define $\mathbb{R}$ in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z), \times\} \Bigr)$ \par
|
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||||
|
|
||||||
\begin{solution}
|
|
||||||
$\Biggl\{ x ~\Bigl|~ \forall y ~ \Bigl( \text{real}(x) \times y = \text{real}(x) \Bigr) \Biggr\}$
|
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user