This commit is contained in:
2023-05-09 21:23:09 -07:00
parent 3b197b0759
commit 90fd1e6ee1
4 changed files with 101 additions and 56 deletions

View File

@ -58,8 +58,41 @@ Which are true in $\mathbb{R}^+_0$? \par
\vfill
\pagebreak
\problem{}
Define $\forall$ using logical symbols and $\exists$
Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
\vfill
\problem{}
Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
\vfill
\problem{}
Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
\vfill
\problem{}
Define $3$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
\vfill
\pagebreak
\problem{}
Let $\varphi(x)$ be a formula. \par
Define $(\forall x ~ \varphi(x))$ using logical symbols and $\exists$.
\begin{solution}
$\Bigl(\forall x ~ \varphi(x)\Bigr)$ is true iff $\lnot \Bigl(\exists x ~ \lnot \varphi(x) \Bigr)$ is true.
\end{solution}
\vfill