Edits
This commit is contained in:
@ -58,8 +58,41 @@ Which are true in $\mathbb{R}^+_0$? \par
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $\forall$ using logical symbols and $\exists$
|
||||
Define 0 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Define 1 in $\Bigl( \mathbb{Z} ~\big|~ \{\times\} \Bigr)$
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define $3$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Let $\varphi(x)$ be a formula. \par
|
||||
Define $(\forall x ~ \varphi(x))$ using logical symbols and $\exists$.
|
||||
|
||||
\begin{solution}
|
||||
$\Bigl(\forall x ~ \varphi(x)\Bigr)$ is true iff $\lnot \Bigl(\exists x ~ \lnot \varphi(x) \Bigr)$ is true.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
Reference in New Issue
Block a user