Edits
This commit is contained in:
@ -1,7 +1,7 @@
|
||||
\section{Structures}
|
||||
|
||||
\definition{}<def:language>
|
||||
A \textit{language} is a set of meaningless symbols. Here are a few examples:
|
||||
A \textit{language} is a set of meaningless objects. Here are a few examples:
|
||||
\begin{itemize}
|
||||
\item $\{a, b, ..., z\}$
|
||||
\item $\{0, 1\}$
|
||||
@ -12,30 +12,27 @@ Every language comes with the equality check $=$, which checks if two elements a
|
||||
|
||||
|
||||
\definition{}
|
||||
A \textit{structure} over a language $\mathcal{L}$ consists of three sets:
|
||||
\begin{itemize}
|
||||
\item A set of \textit{constant symbols} $\mathcal{C}$ \par
|
||||
Constant symbols let us specify specific elements of our language. \par
|
||||
$\mathcal{C}$ must thus be a subset of $\mathcal{L}$.
|
||||
\vspace{3mm}
|
||||
|
||||
|
||||
\item A set of \textit{function symbols} $\mathcal{F}$ \par
|
||||
Function symbols let us navigate between elements of our language. \par
|
||||
$+$, $-$ are functions, as are $\sin{x}$, $\cos{x}$, and $\sqrt{x}$ \par
|
||||
Functions take inputs in $\mathcal{L}$ and produce outputs in $\mathcal{L}$.
|
||||
\vspace{3mm}
|
||||
|
||||
\item A set of \textit{relation symbols} $\mathcal{R}$ \par
|
||||
Relation symbols let us compare elements of our language. \par
|
||||
You are already familiar with this concept: $>$, $<$, and $\leq$ are relation symbols. \par
|
||||
$=$ is \textbf{not} a relational symbol. Why? \hint{See \ref{def:language}}
|
||||
|
||||
\end{itemize}
|
||||
A \textit{structure} over a language $\mathcal{L}$ consists of a set of symbols. \par
|
||||
The purpose of a structure is to give a language meaning.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The purpose of a structure is to give a language meaning. This is best explained by example.
|
||||
Symbols generally come in three types:
|
||||
\begin{itemize}
|
||||
\item Constant symbols, which let us specify specific elements of our language. \par
|
||||
Examples: $0, 1, \frac{1}{2}, \pi$
|
||||
\vspace{2mm}
|
||||
|
||||
\item Function symbols, which let us navigate between elements of our language. \par
|
||||
Examples: $+, \times, \sin{x}, \sqrt{x}$
|
||||
\vspace{2mm}
|
||||
|
||||
\item Relation symbols, which let us compare elements of our language. \par
|
||||
Examples: $<, >, \leq, \geq$ \par
|
||||
The symbol $=$ is \textbf{not} a relation. Why? \hint{See \ref{def:language}}
|
||||
\vspace{2mm}
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
@ -45,25 +42,21 @@ The purpose of a structure is to give a language meaning. This is best explained
|
||||
|
||||
The first structure we'll look at is the following:
|
||||
$$
|
||||
\Bigl(
|
||||
\mathcal{L} ~\big|~ \{\mathcal{C}, ~ \mathcal{F}, ~ \mathcal{R}\}
|
||||
\Bigr)
|
||||
=
|
||||
\Bigl( \mathbb{Z} ~\big|~ \{0, 1, ~ +, -, ~ <\} \Bigr)
|
||||
\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)
|
||||
$$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This is a structure over $\mathbb{Z}$ with the following symbols:
|
||||
\begin{itemize}
|
||||
\item $\mathcal{C} = \{0, 1\}$ \tab \note{(constants)}
|
||||
\item $\mathcal{F} = \{+, -\}$ \tab \note{(functions)}
|
||||
\item $\mathcal{R} = \{<\}$ \tab \note{(relations)}
|
||||
\item Constants: \tab $\{0, 1\}$
|
||||
\item Functions: \tab $\{+, -\}$
|
||||
\item Relations: \tab $\{<\}$
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Let's look at $\mathcal{C}$, our set of constant symbols. The only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools the structure offers.
|
||||
If you look at our set of constant symbols, you'll see that the only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools the structure offers.
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
@ -104,7 +97,7 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z^+} ~\big|~ \{4, \times \} \Bi
|
||||
\hint{$\mathbb{Z}^+ = \{1, 2, 3, ...\}$}
|
||||
|
||||
\begin{solution}
|
||||
Yes! $-2$ no longer exists, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
|
||||
$-2 \notin \mathbb{Z}^+$, so $2$ can be defined by $[x \text{ where } x \times x = 4]$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
@ -122,10 +115,10 @@ Can we define 2 in the structure $\Bigl( \mathbb{Z} ~\big|~ \{4, \times \} \Bigr
|
||||
|
||||
|
||||
\problem{}
|
||||
What is definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
|
||||
What numbers are definable in the structure $\Bigl( \mathbb{R} ~\big|~ \{1, 2, \div \} \Bigr)$?
|
||||
|
||||
\begin{solution}
|
||||
All powers of two, positive and negative.
|
||||
With the tools we have so far, we can only define powers of two, positive and negative.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
Reference in New Issue
Block a user