Edits
This commit is contained in:
@ -73,13 +73,23 @@ Evaluate the following.
|
||||
\begin{itemize}
|
||||
\item $(T \land F) \lor T$
|
||||
\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
|
||||
\item $A \rightarrow T$ for any $A$
|
||||
\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A,B$
|
||||
\item $(F \rightarrow T) \rightarrow (\lnot F \lor \lnot T)$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Evaluate the following.
|
||||
\begin{itemize}
|
||||
\item $A \rightarrow T$ for any $A$
|
||||
\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A, B$
|
||||
\item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
||||
\hint{Use a truth table}
|
||||
|
Reference in New Issue
Block a user