Finished TMAM hanout
This commit is contained in:
parent
9b55f682ce
commit
8d27bf87ce
@ -7,6 +7,9 @@
|
|||||||
|
|
||||||
\usepackage{mathtools} % for \coloneqq
|
\usepackage{mathtools} % for \coloneqq
|
||||||
|
|
||||||
|
%\usepackage{lua-visual-debug}
|
||||||
|
|
||||||
|
\usepackage{censor}
|
||||||
\usepackage{alltt}
|
\usepackage{alltt}
|
||||||
|
|
||||||
|
|
||||||
@ -37,10 +40,24 @@
|
|||||||
}
|
}
|
||||||
|
|
||||||
% Logic block comment
|
% Logic block comment
|
||||||
\newcommand{\cmnt}[1]{
|
\newcommand{\cmnt}[1]{\textcolor{gray}{\# #1}}
|
||||||
\textcolor{gray}{\# #1}
|
|
||||||
|
\newcounter{allttLineCounter}
|
||||||
|
\setcounter{allttLineCounter}{0}
|
||||||
|
|
||||||
|
\newcommand{\linenoref}[1]{\colorbox{gray!30!white}{#1}}
|
||||||
|
\newcommand{\lineno}{
|
||||||
|
\stepcounter{allttLineCounter}%
|
||||||
|
\linenoref{\ifnum\value{allttLineCounter}<10 0\fi\arabic{allttLineCounter}}%
|
||||||
}
|
}
|
||||||
|
|
||||||
|
% Redefine alltt so it automatically
|
||||||
|
% resets allttLineCounter
|
||||||
|
\let\oldalltt\alltt
|
||||||
|
\renewenvironment{alltt}
|
||||||
|
{\setcounter{allttLineCounter}{0}\begin{oldalltt}}
|
||||||
|
{\end{oldalltt}}
|
||||||
|
|
||||||
|
|
||||||
\newcommand{\thus}{\(\Rightarrow\)}
|
\newcommand{\thus}{\(\Rightarrow\)}
|
||||||
\newcommand{\qed}{\(\blacksquare\)}
|
\newcommand{\qed}{\(\blacksquare\)}
|
||||||
@ -59,5 +76,5 @@
|
|||||||
|
|
||||||
\input{parts/00 intro}
|
\input{parts/00 intro}
|
||||||
\input{parts/01 tmam}
|
\input{parts/01 tmam}
|
||||||
|
\input{parts/02 kestrel}
|
||||||
\end{document}
|
\end{document}
|
@ -38,7 +38,9 @@ We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$,
|
|||||||
$$
|
$$
|
||||||
Cx = A(Bx)
|
Cx = A(Bx)
|
||||||
$$
|
$$
|
||||||
In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$.
|
In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$. \\
|
||||||
|
Note that $C$ is exactly the kind of bird $L_1$ guarantees.
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
@ -1,11 +1,11 @@
|
|||||||
\section{To Mock a Mockingbird}
|
\section{To Mock a Mockingbird}
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
The bear, a lifelong resident of the forest, tells you that any bird $A$ is fond of at least one other bird. \\
|
Mark tells you that any bird $A$ is fond of at least one other bird. \\
|
||||||
Complete his proof.
|
Complete his proof.
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
let A \cmnt{Let A be any any bird.}
|
let A \cmnt{Let A be any any bird.}
|
||||||
let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
|
let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
||||||
|
|
||||||
\cmnt{The rest is up to you.}
|
\cmnt{The rest is up to you.}
|
||||||
CC = ??
|
CC = ??
|
||||||
@ -20,17 +20,16 @@ Complete his proof.
|
|||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
let A \cmnt{Let A be any any bird.}
|
\lineno{} let A \cmnt{Let A be any any bird.}
|
||||||
let Cx := A(Mx) \cmnt{Define C as the composition of A and M}
|
\lineno{} let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
||||||
CC = A(MC)
|
\lineno{} CC = A(MC)
|
||||||
= A(CC) \qed{}
|
\lineno{} = A(CC) \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\problem{}
|
\problem{}
|
||||||
We say a bird $A$ is \textit{egocentric} if it is fond if itself.
|
We say a bird $A$ is \textit{egocentric} if it is fond if itself. \\
|
||||||
|
|
||||||
Show that the laws of the forest guarantee that at least one bird is egocentric.
|
Show that the laws of the forest guarantee that at least one bird is egocentric.
|
||||||
|
|
||||||
|
|
||||||
@ -42,12 +41,12 @@ Show that the laws of the forest guarantee that at least one bird is egocentric.
|
|||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\cmnt{We know M is fond of at least one bird.}
|
\lineno{} \cmnt{We know M is fond of at least one bird.}
|
||||||
let E so that ME = E
|
\lineno{} let E so that ME = E
|
||||||
|
\lineno{}
|
||||||
ME = E \cmnt{By definition of fondness}
|
\lineno{} ME = E \cmnt{By definition of fondness}
|
||||||
ME = EE \cmnt{By definition of M}
|
\lineno{} ME = EE \cmnt{By definition of M}
|
||||||
\thus{} EE = E \qed{}
|
\lineno{} \thus{} EE = E \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@ -57,7 +56,7 @@ Show that the laws of the forest guarantee that at least one bird is egocentric.
|
|||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
||||||
This means that $Ax = Bx$.
|
In other words, $A$ is agreeable if $Ax = Bx$ for some $x$ for all $B$.
|
||||||
|
|
||||||
\begin{helpbox}
|
\begin{helpbox}
|
||||||
\texttt{Def:} $Mx := xx$
|
\texttt{Def:} $Mx := xx$
|
||||||
@ -73,15 +72,14 @@ This means that $Ax = Bx$.
|
|||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Take two birds $A$ and $B$. Let $C$ be their composition. \\
|
Take two birds $A$ and $B$. Let $C$ be their composition. \\
|
||||||
Show that $A$ must be agreeable if $C$ is agreeable. \\
|
Show that $A$ must be agreeable if $C$ is agreeable.
|
||||||
The bear has again given you a hint.
|
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\cmnt{Given information}
|
\cmnt{Given information}
|
||||||
let A, B
|
let A, B
|
||||||
let Cx := A(Bx)
|
let Cx = A(Bx)
|
||||||
|
|
||||||
let D \cmnt{Arbitrary bird}
|
let D \cmnt{Arbitrary bird}
|
||||||
let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
|
let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
|
||||||
Cy = ??
|
Cy = ??
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
|
|
||||||
@ -93,15 +91,16 @@ The bear has again given you a hint.
|
|||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
\cmnt{Given information}
|
\lineno{} \cmnt{Given information}
|
||||||
let A, B
|
\lineno{} let A, B
|
||||||
let Cx := A(Bx)
|
\lineno{} let Cx = A(Bx)
|
||||||
|
\lineno{}
|
||||||
let D \cmnt{Arbitrary bird}
|
\lineno{} let D \cmnt{Arbitrary bird}
|
||||||
let Ex := D(Bx) \cmnt{Define E as the composition of D and B}
|
\lineno{} let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
|
||||||
Cy = Ey \cmnt{For some y, because C is agreeable}
|
\lineno{} let y so that Cy = Ey \cmnt{Such a y must exist because C is agreeable}
|
||||||
\thus{} A(By) = Ey
|
\lineno{}
|
||||||
\thus{} A(By) = D(By) \qed{}
|
\lineno{} A(By) = Ey
|
||||||
|
\lineno{} = D(By) \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@ -109,18 +108,18 @@ The bear has again given you a hint.
|
|||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ defined by $Dx = A(B(Cx))$
|
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ satisfying $Dx = A(B(Cx))$
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
let A, B, C
|
\lineno{} let A, B, C
|
||||||
|
\lineno{}
|
||||||
\cmnt{Invoke the Law of Composition:}
|
\lineno{} \cmnt{Invoke the Law of Composition:}
|
||||||
let Q := BC
|
\lineno{} let Q = BC
|
||||||
let D := AQ
|
\lineno{} let D = AQ
|
||||||
|
\lineno{}
|
||||||
D = AQ
|
\lineno{} D = AQ
|
||||||
= A(BC) \qed{}
|
\lineno{} = A(BC) \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@ -133,7 +132,7 @@ Note that $x$ and $y$ may be the same bird. \\
|
|||||||
Show that any two birds in this forest are compatible. \\
|
Show that any two birds in this forest are compatible. \\
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
let A, B
|
let A, B
|
||||||
let Cx := A(Bx)
|
let Cx = A(Bx)
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
|
|
||||||
\begin{helpbox}
|
\begin{helpbox}
|
||||||
@ -143,16 +142,16 @@ Show that any two birds in this forest are compatible. \\
|
|||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
let A, B
|
\lineno{} let A, B
|
||||||
|
\lineno{}
|
||||||
let Cx := A(Bx) \cmnt{Composition}
|
\lineno{} let Cx = A(Bx) \cmnt{Composition}
|
||||||
let y := Cy \cmnt{Let C be fond of y}
|
\lineno{} let y = Cy \cmnt{Let C be fond of y}
|
||||||
|
\lineno{}
|
||||||
Cy = y
|
\lineno{} Cy = y
|
||||||
\thus{} A(By) = y
|
\lineno{} = A(By)
|
||||||
|
\lineno{}
|
||||||
let x := By \cmnt{Rename By to x}
|
\lineno{} let x = By \cmnt{Rename By to x}
|
||||||
Ax = y \qed{}
|
\lineno{} Ax = y \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
@ -163,13 +162,13 @@ Show that any bird that is fond of at least one bird is compatible with itself.
|
|||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
\begin{alltt}
|
\begin{alltt}
|
||||||
let A
|
\lineno{} let A
|
||||||
let x so that Ax = x
|
\lineno{} let x so that Ax = x \cmnt{A is fond of at least one other bird}
|
||||||
Ax = x \qed{}
|
\lineno{} Ax = x \qed{}
|
||||||
\end{alltt}
|
\end{alltt}
|
||||||
|
|
||||||
That's it.
|
That's it.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
137
Advanced/Mock a Mockingbird/parts/02 kestrel.tex
Normal file
137
Advanced/Mock a Mockingbird/parts/02 kestrel.tex
Normal file
@ -0,0 +1,137 @@
|
|||||||
|
\section{The Curious Kestrel}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
Recall that a bird is \textit{egocenteric} if it is fond of itself. \\
|
||||||
|
A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$.
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
More generally, we say that a bird $A$ is \textit{fixated} on a bird $B$ if $Ax = B$ for all $x$. \\
|
||||||
|
Convince yourself that a hopelessly egocentric bird is fixated on itself.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Say $A$ is fixated on $B$. Is $A$ fond of $B$?
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
Yes! See the following proof.
|
||||||
|
\begin{alltt}
|
||||||
|
\lineno{} let B
|
||||||
|
\lineno{} let B
|
||||||
|
\lineno{} let A so that Ax = B
|
||||||
|
\lineno{} \thus{} AB = B \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
The \textit{Kestrel} $K$ is defined by the following relationship:
|
||||||
|
$$
|
||||||
|
(Kx)y = x
|
||||||
|
$$
|
||||||
|
In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that an egocenteric Kestrel is hopelessly egocentric
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
\lineno{} KK = K
|
||||||
|
\lineno{} \thus{} (KK)y = K
|
||||||
|
\lineno{} \thus{} Ky = K \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Assume the forest contains a Kestrel. \\
|
||||||
|
Given $L_1$ and $L_2$, show that at least one bird is hopelessly egocentric.
|
||||||
|
|
||||||
|
\begin{helpbox}[0.75]
|
||||||
|
\texttt{Def:} $K$ is defined by $(Kx)y = x$ \\
|
||||||
|
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
|
||||||
|
\texttt{???:} You'll need one more result from the previous section. Good luck!
|
||||||
|
\end{helpbox}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
The final piece is a lemma we proved earler: \\
|
||||||
|
Any bird is fond of at least one bird
|
||||||
|
|
||||||
|
\begin{alltt}
|
||||||
|
\lineno{} let A so that KA = A \cmnt{Any bird is fond of at least one bird}
|
||||||
|
\lineno{} (KA)y = y \cmnt{By definition of the kestrel}
|
||||||
|
\lineno{} \thus{} Ay = A \qed{} \cmnt{By 01}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{Kestrel Left-Cancellation}<leftcancel>
|
||||||
|
In general, $Ax = Ay$ does not imply $x = y$. However, this is true if $A$ is $K$. \\
|
||||||
|
Show that $Kx = Ky \implies x = y$.
|
||||||
|
|
||||||
|
\begin{alltt}
|
||||||
|
\cmnt{This is a hint.}
|
||||||
|
let x, y so that Kx = Ky
|
||||||
|
\end{alltt}
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
\lineno{} let x, y so that Kx = Ky
|
||||||
|
\lineno{} let z
|
||||||
|
\lineno{}
|
||||||
|
\lineno{} (Kx)z = (Ky)z \cmnt{By 01}
|
||||||
|
\lineno{}
|
||||||
|
\lineno{} \cmnt{By the definition of K}
|
||||||
|
\lineno{} (Kx)z = x
|
||||||
|
\lineno{} (Ky)z = y
|
||||||
|
\lineno{}
|
||||||
|
\lineno{} \thus{} x = (Kx)z = (Ky)z = y \qed{}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that if $K$ is fond of $Kx$, $K$ is fond of $x$.
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
\begin{alltt}
|
||||||
|
\lineno{} let x so that K(Kx) = Kx
|
||||||
|
\lineno{} (K(Kx))y = (Kx)y
|
||||||
|
\lineno{} = Kx \cmnt{By definition of K}
|
||||||
|
\lineno{} x = Kx \cmnt{By 03 and definition of K}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
An egocentric Kestrel must be extremely lonely. Why is this?
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
If a Kestrel is egocenteric, it must be the only bird in the forest:
|
||||||
|
|
||||||
|
\begin{alltt}
|
||||||
|
\lineno{} \cmnt{Given}
|
||||||
|
\lineno{} Kx = K for some x
|
||||||
|
\lineno{} \cmnt{We have shown that an egocentric kestrel is hopelessly egocentric}
|
||||||
|
\lineno{} Kx = K for all x
|
||||||
|
\lineno{}
|
||||||
|
\lineno{} let x, y
|
||||||
|
\lineno{} Kx = K
|
||||||
|
\lineno{} Ky = K
|
||||||
|
\lineno{} Kx = Ky
|
||||||
|
\lineno{} x = y for all x, y \cmnt{By \ref{leftcancel}}
|
||||||
|
\lineno{} x = y = K \qed{} \cmnt{By 10, and since K exists}
|
||||||
|
\end{alltt}
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user