Finished TMAM hanout

This commit is contained in:
Mark 2023-03-16 19:36:13 -07:00
parent 9b55f682ce
commit 8d27bf87ce
4 changed files with 211 additions and 56 deletions

View File

@ -7,6 +7,9 @@
\usepackage{mathtools} % for \coloneqq \usepackage{mathtools} % for \coloneqq
%\usepackage{lua-visual-debug}
\usepackage{censor}
\usepackage{alltt} \usepackage{alltt}
@ -37,10 +40,24 @@
} }
% Logic block comment % Logic block comment
\newcommand{\cmnt}[1]{ \newcommand{\cmnt}[1]{\textcolor{gray}{\# #1}}
\textcolor{gray}{\# #1}
\newcounter{allttLineCounter}
\setcounter{allttLineCounter}{0}
\newcommand{\linenoref}[1]{\colorbox{gray!30!white}{#1}}
\newcommand{\lineno}{
\stepcounter{allttLineCounter}%
\linenoref{\ifnum\value{allttLineCounter}<10 0\fi\arabic{allttLineCounter}}%
} }
% Redefine alltt so it automatically
% resets allttLineCounter
\let\oldalltt\alltt
\renewenvironment{alltt}
{\setcounter{allttLineCounter}{0}\begin{oldalltt}}
{\end{oldalltt}}
\newcommand{\thus}{\(\Rightarrow\)} \newcommand{\thus}{\(\Rightarrow\)}
\newcommand{\qed}{\(\blacksquare\)} \newcommand{\qed}{\(\blacksquare\)}
@ -59,5 +76,5 @@
\input{parts/00 intro} \input{parts/00 intro}
\input{parts/01 tmam} \input{parts/01 tmam}
\input{parts/02 kestrel}
\end{document} \end{document}

View File

@ -38,7 +38,9 @@ We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$,
$$ $$
Cx = A(Bx) Cx = A(Bx)
$$ $$
In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$. In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$. \\
Note that $C$ is exactly the kind of bird $L_1$ guarantees.
\vfill \vfill
\pagebreak \pagebreak

View File

@ -1,11 +1,11 @@
\section{To Mock a Mockingbird} \section{To Mock a Mockingbird}
\problem{} \problem{}
The bear, a lifelong resident of the forest, tells you that any bird $A$ is fond of at least one other bird. \\ Mark tells you that any bird $A$ is fond of at least one other bird. \\
Complete his proof. Complete his proof.
\begin{alltt} \begin{alltt}
let A \cmnt{Let A be any any bird.} let A \cmnt{Let A be any any bird.}
let Cx := A(Mx) \cmnt{Define C as the composition of A and M} let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
\cmnt{The rest is up to you.} \cmnt{The rest is up to you.}
CC = ?? CC = ??
@ -20,17 +20,16 @@ Complete his proof.
\begin{solution} \begin{solution}
\begin{alltt} \begin{alltt}
let A \cmnt{Let A be any any bird.} \lineno{} let A \cmnt{Let A be any any bird.}
let Cx := A(Mx) \cmnt{Define C as the composition of A and M} \lineno{} let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
CC = A(MC) \lineno{} CC = A(MC)
= A(CC) \qed{} \lineno{} = A(CC) \qed{}
\end{alltt} \end{alltt}
\end{solution} \end{solution}
\vfill \vfill
\problem{} \problem{}
We say a bird $A$ is \textit{egocentric} if it is fond if itself. We say a bird $A$ is \textit{egocentric} if it is fond if itself. \\
Show that the laws of the forest guarantee that at least one bird is egocentric. Show that the laws of the forest guarantee that at least one bird is egocentric.
@ -42,12 +41,12 @@ Show that the laws of the forest guarantee that at least one bird is egocentric.
\begin{solution} \begin{solution}
\begin{alltt} \begin{alltt}
\cmnt{We know M is fond of at least one bird.} \lineno{} \cmnt{We know M is fond of at least one bird.}
let E so that ME = E \lineno{} let E so that ME = E
\lineno{}
ME = E \cmnt{By definition of fondness} \lineno{} ME = E \cmnt{By definition of fondness}
ME = EE \cmnt{By definition of M} \lineno{} ME = EE \cmnt{By definition of M}
\thus{} EE = E \qed{} \lineno{} \thus{} EE = E \qed{}
\end{alltt} \end{alltt}
\end{solution} \end{solution}
@ -57,7 +56,7 @@ Show that the laws of the forest guarantee that at least one bird is egocentric.
\problem{} \problem{}
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\ We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
This means that $Ax = Bx$. In other words, $A$ is agreeable if $Ax = Bx$ for some $x$ for all $B$.
\begin{helpbox} \begin{helpbox}
\texttt{Def:} $Mx := xx$ \texttt{Def:} $Mx := xx$
@ -73,15 +72,14 @@ This means that $Ax = Bx$.
\problem{} \problem{}
Take two birds $A$ and $B$. Let $C$ be their composition. \\ Take two birds $A$ and $B$. Let $C$ be their composition. \\
Show that $A$ must be agreeable if $C$ is agreeable. \\ Show that $A$ must be agreeable if $C$ is agreeable.
The bear has again given you a hint.
\begin{alltt} \begin{alltt}
\cmnt{Given information} \cmnt{Given information}
let A, B let A, B
let Cx := A(Bx) let Cx = A(Bx)
let D \cmnt{Arbitrary bird} let D \cmnt{Arbitrary bird}
let Ex := D(Bx) \cmnt{Define E as the composition of D and B} let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
Cy = ?? Cy = ??
\end{alltt} \end{alltt}
@ -93,15 +91,16 @@ The bear has again given you a hint.
\begin{solution} \begin{solution}
\begin{alltt} \begin{alltt}
\cmnt{Given information} \lineno{} \cmnt{Given information}
let A, B \lineno{} let A, B
let Cx := A(Bx) \lineno{} let Cx = A(Bx)
\lineno{}
let D \cmnt{Arbitrary bird} \lineno{} let D \cmnt{Arbitrary bird}
let Ex := D(Bx) \cmnt{Define E as the composition of D and B} \lineno{} let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
Cy = Ey \cmnt{For some y, because C is agreeable} \lineno{} let y so that Cy = Ey \cmnt{Such a y must exist because C is agreeable}
\thus{} A(By) = Ey \lineno{}
\thus{} A(By) = D(By) \qed{} \lineno{} A(By) = Ey
\lineno{} = D(By) \qed{}
\end{alltt} \end{alltt}
\end{solution} \end{solution}
@ -109,18 +108,18 @@ The bear has again given you a hint.
\pagebreak \pagebreak
\problem{} \problem{}
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ defined by $Dx = A(B(Cx))$ Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ satisfying $Dx = A(B(Cx))$
\begin{solution} \begin{solution}
\begin{alltt} \begin{alltt}
let A, B, C \lineno{} let A, B, C
\lineno{}
\cmnt{Invoke the Law of Composition:} \lineno{} \cmnt{Invoke the Law of Composition:}
let Q := BC \lineno{} let Q = BC
let D := AQ \lineno{} let D = AQ
\lineno{}
D = AQ \lineno{} D = AQ
= A(BC) \qed{} \lineno{} = A(BC) \qed{}
\end{alltt} \end{alltt}
\end{solution} \end{solution}
@ -133,7 +132,7 @@ Note that $x$ and $y$ may be the same bird. \\
Show that any two birds in this forest are compatible. \\ Show that any two birds in this forest are compatible. \\
\begin{alltt} \begin{alltt}
let A, B let A, B
let Cx := A(Bx) let Cx = A(Bx)
\end{alltt} \end{alltt}
\begin{helpbox} \begin{helpbox}
@ -143,16 +142,16 @@ Show that any two birds in this forest are compatible. \\
\begin{solution} \begin{solution}
\begin{alltt} \begin{alltt}
let A, B \lineno{} let A, B
\lineno{}
let Cx := A(Bx) \cmnt{Composition} \lineno{} let Cx = A(Bx) \cmnt{Composition}
let y := Cy \cmnt{Let C be fond of y} \lineno{} let y = Cy \cmnt{Let C be fond of y}
\lineno{}
Cy = y \lineno{} Cy = y
\thus{} A(By) = y \lineno{} = A(By)
\lineno{}
let x := By \cmnt{Rename By to x} \lineno{} let x = By \cmnt{Rename By to x}
Ax = y \qed{} \lineno{} Ax = y \qed{}
\end{alltt} \end{alltt}
\end{solution} \end{solution}
@ -163,13 +162,13 @@ Show that any bird that is fond of at least one bird is compatible with itself.
\begin{solution} \begin{solution}
\begin{alltt} \begin{alltt}
let A \lineno{} let A
let x so that Ax = x \lineno{} let x so that Ax = x \cmnt{A is fond of at least one other bird}
Ax = x \qed{} \lineno{} Ax = x \qed{}
\end{alltt} \end{alltt}
That's it. That's it.
\end{solution} \end{solution}
\vfill \vfill
\pagebreak \pagebreak

View File

@ -0,0 +1,137 @@
\section{The Curious Kestrel}
\definition{}
Recall that a bird is \textit{egocenteric} if it is fond of itself. \\
A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$.
\definition{}
More generally, we say that a bird $A$ is \textit{fixated} on a bird $B$ if $Ax = B$ for all $x$. \\
Convince yourself that a hopelessly egocentric bird is fixated on itself.
\problem{}
Say $A$ is fixated on $B$. Is $A$ fond of $B$?
\begin{solution}
Yes! See the following proof.
\begin{alltt}
\lineno{} let B
\lineno{} let B
\lineno{} let A so that Ax = B
\lineno{} \thus{} AB = B \qed{}
\end{alltt}
\end{solution}
\vfill
\definition{}
The \textit{Kestrel} $K$ is defined by the following relationship:
$$
(Kx)y = x
$$
In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$.
\problem{}
Show that an egocenteric Kestrel is hopelessly egocentric
\begin{solution}
\begin{alltt}
\lineno{} KK = K
\lineno{} \thus{} (KK)y = K
\lineno{} \thus{} Ky = K \qed{}
\end{alltt}
\end{solution}
\vfill
\pagebreak
\problem{}
Assume the forest contains a Kestrel. \\
Given $L_1$ and $L_2$, show that at least one bird is hopelessly egocentric.
\begin{helpbox}[0.75]
\texttt{Def:} $K$ is defined by $(Kx)y = x$ \\
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
\texttt{???:} You'll need one more result from the previous section. Good luck!
\end{helpbox}
\begin{solution}
The final piece is a lemma we proved earler: \\
Any bird is fond of at least one bird
\begin{alltt}
\lineno{} let A so that KA = A \cmnt{Any bird is fond of at least one bird}
\lineno{} (KA)y = y \cmnt{By definition of the kestrel}
\lineno{} \thus{} Ay = A \qed{} \cmnt{By 01}
\end{alltt}
\end{solution}
\vfill
\problem{Kestrel Left-Cancellation}<leftcancel>
In general, $Ax = Ay$ does not imply $x = y$. However, this is true if $A$ is $K$. \\
Show that $Kx = Ky \implies x = y$.
\begin{alltt}
\cmnt{This is a hint.}
let x, y so that Kx = Ky
\end{alltt}
\begin{solution}
\begin{alltt}
\lineno{} let x, y so that Kx = Ky
\lineno{} let z
\lineno{}
\lineno{} (Kx)z = (Ky)z \cmnt{By 01}
\lineno{}
\lineno{} \cmnt{By the definition of K}
\lineno{} (Kx)z = x
\lineno{} (Ky)z = y
\lineno{}
\lineno{} \thus{} x = (Kx)z = (Ky)z = y \qed{}
\end{alltt}
\end{solution}
\vfill
\pagebreak
\problem{}
Show that if $K$ is fond of $Kx$, $K$ is fond of $x$.
\begin{solution}
\begin{alltt}
\lineno{} let x so that K(Kx) = Kx
\lineno{} (K(Kx))y = (Kx)y
\lineno{} = Kx \cmnt{By definition of K}
\lineno{} x = Kx \cmnt{By 03 and definition of K}
\end{alltt}
\end{solution}
\vfill
\problem{}
An egocentric Kestrel must be extremely lonely. Why is this?
\begin{solution}
If a Kestrel is egocenteric, it must be the only bird in the forest:
\begin{alltt}
\lineno{} \cmnt{Given}
\lineno{} Kx = K for some x
\lineno{} \cmnt{We have shown that an egocentric kestrel is hopelessly egocentric}
\lineno{} Kx = K for all x
\lineno{}
\lineno{} let x, y
\lineno{} Kx = K
\lineno{} Ky = K
\lineno{} Kx = Ky
\lineno{} x = y for all x, y \cmnt{By \ref{leftcancel}}
\lineno{} x = y = K \qed{} \cmnt{By 10, and since K exists}
\end{alltt}
\end{solution}
\vfill
\pagebreak