This commit is contained in:
Mark 2023-05-11 21:34:11 -07:00
parent b0c9969072
commit 8692eaa14a

View File

@ -94,10 +94,10 @@ Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par
The relation $a \diamond b$ holds if $| a - b | = 1$
\problempart{}
Define $\{\}$ in $S$.
Define the empty set in $S$.
\problempart{}
Define ${-1, 1}$ in $S$.
Define $\{-1, 1\}$ in $S$.
\problempart{}
Define $\{-2, 2\}$ in $S$.
@ -116,7 +116,7 @@ Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{
Show that $\Bumpeq$ is definable in $S$.
\problempart{}
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{compliment} of the set $x$. \par
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of the set $x$. \par
Show that $f$ is definable in $S$.
\vfill