diff --git a/Advanced/Definable Sets/parts/3 sets.tex b/Advanced/Definable Sets/parts/3 sets.tex index dc83250..d6400b0 100644 --- a/Advanced/Definable Sets/parts/3 sets.tex +++ b/Advanced/Definable Sets/parts/3 sets.tex @@ -94,10 +94,10 @@ Consider the structure $S = ( \mathbb{R} ~|~ \{0, \diamond \} )$ \par The relation $a \diamond b$ holds if $| a - b | = 1$ \problempart{} -Define $\{\}$ in $S$. +Define the empty set in $S$. \problempart{} -Define ${-1, 1}$ in $S$. +Define $\{-1, 1\}$ in $S$. \problempart{} Define $\{-2, 2\}$ in $S$. @@ -116,7 +116,7 @@ Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{ Show that $\Bumpeq$ is definable in $S$. \problempart{} -Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{compliment} of the set $x$. \par +Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of the set $x$. \par Show that $f$ is definable in $S$. \vfill