Minor edits
This commit is contained in:
parent
b122a150ff
commit
82064f890c
@ -51,13 +51,6 @@ An ordered field must satisfy the following properties:
|
|||||||
\definition{}
|
\definition{}
|
||||||
An ordered field that contains $\mathbb{R}$ is called a \textit{nonarchimedian extension} of $\mathbb{R}$.
|
An ordered field that contains $\mathbb{R}$ is called a \textit{nonarchimedian extension} of $\mathbb{R}$.
|
||||||
|
|
||||||
\vfill
|
|
||||||
\pagebreak
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that each of the following is true in any ordered field.
|
Show that each of the following is true in any ordered field.
|
||||||
\begin{enumerate}
|
\begin{enumerate}
|
||||||
@ -68,15 +61,14 @@ Show that each of the following is true in any ordered field.
|
|||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
|
|
||||||
\begin{solution}
|
%\begin{solution}
|
||||||
\textbf{Part A:}
|
% \textbf{Part A:}
|
||||||
|
% We know that $x^{-1} \times (x^{-1})^{-1} = 1$ \par
|
||||||
We know that $x^{-1} \times (x^{-1})^{-1} = 1$ \par
|
% Thus $x \times (x^{-1} \times (x^{-1})^{-1}) = x \times 1 = x$ \par
|
||||||
Thus $x \times (x^{-1} \times (x^{-1})^{-1}) = x \times 1 = x$ \par
|
% We can rewrite this as $(x \times x^{-1}) \times (x^{-1})^{-1} = x$ \par
|
||||||
We can rewrite this as $(x \times x^{-1}) \times (x^{-1})^{-1} = x$ \par
|
% When then becomes $1 \times (x^{-1})^{-1} = x$ \par
|
||||||
When then becomes $1 \times (x^{-1})^{-1} = x$ \par
|
% And thus $(x^{-1})^{-1} = x$
|
||||||
And thus $(x^{-1})^{-1} = x$
|
%\end{solution}
|
||||||
\end{solution}
|
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
Loading…
x
Reference in New Issue
Block a user