Edits
This commit is contained in:
		| @ -17,7 +17,7 @@ | ||||
| % use [nosolutions] flag to hide solutions. | ||||
| % use [solutions] flag to show solutions. | ||||
| \documentclass[ | ||||
| 	solutions, | ||||
| 	nosolutions, | ||||
| 	singlenumbering, | ||||
| ]{../../resources/ormc_handout} | ||||
| \usepackage{../../resources/macros} | ||||
|  | ||||
| @ -24,8 +24,8 @@ An ordered field must satisfy the following properties: | ||||
| 	\begin{itemize} | ||||
| 		\item Commutativity: $a + b = b + a$ | ||||
| 		\item Associativity: $a + (b + c) = (a + b) + c$ | ||||
| 		\item Identity: there exists an element $0$ so that $a + 0 = a \forall a \in S$ | ||||
| 		\item Inverse: for every $-a$, there exists a $-a$ so that $a + (-a) = 0$ | ||||
| 		\item Identity: there exists an element $0$ so that $a + 0 = a$ for all $a \in S$ | ||||
| 		\item Inverse: for every $a$, there exists a $-a$ so that $a + (-a) = 0$ | ||||
| 	\end{itemize} | ||||
|  | ||||
| 	\item \textbf{Properties of $\times$:} | ||||
| @ -33,7 +33,7 @@ An ordered field must satisfy the following properties: | ||||
| 		\item Commutativity | ||||
| 		\item Associativity | ||||
| 		\item Identity (which we label $1$) | ||||
| 		\item Inverse (which we label $a^{-1}$, and which doesn't exist for $0$) | ||||
| 		\item For every $a \neq 0$, there exists an inverse $a^{-1}$ so that $aa^{-1} = 1$ | ||||
| 		\item Distributivity: $a(b + c) = ab + ac$ | ||||
| 	\end{itemize} | ||||
|  | ||||
| @ -41,7 +41,7 @@ An ordered field must satisfy the following properties: | ||||
| 	\begin{itemize} | ||||
| 		\item Non-reflexive: $x < x$ is always false | ||||
| 		\item Transitive: $x < y$ and $y < z$ imply $x < z$ | ||||
| 		\item Connected: for all $x, y \in S$, either $x < y$, $y > x$, or $x = y$. | ||||
| 		\item Connected: for all $x, y \in S$, either $x < y$, $x > y$, or $x = y$. | ||||
| 		\item If $x < y$ then $x + z < y + z$ | ||||
| 		\item If $x < y$ and $z > 0$, then $xz < yz$ | ||||
| 		\item $0 < 1$ | ||||
| @ -51,11 +51,30 @@ An ordered field must satisfy the following properties: | ||||
| \definition{} | ||||
| An ordered field that contains $\mathbb{R}$ is called a \textit{nonarchimedian extension} of $\mathbb{R}$. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Which of the following are ordered fields? | ||||
| \begin{itemize}[itemsep=2mm] | ||||
| 	\item $\mathbb{R}$ with the usual definitions of $+$, $\times$, $<$ | ||||
| 	\item $\mathbb{R}$ with the usual definitions of $+$, $\times$, $\leq$ \par | ||||
| 	\note{Note that our relation here is $\leq$, not $<$} | ||||
| 	\item $\mathbb{Z}$ with the usual definitions of $+$, $\times$, $<$ | ||||
| 	\item $\mathbb{Q}$ with the usual definitions of $+$, $\times$, $<$ | ||||
| 	\item $\mathbb{C}$ with the usual definitions of $+$, $\times$, \par | ||||
| 	and with $(a + bi) < (c + di)$ iff $a < c$. | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Show that each of the following is true in any ordered field. | ||||
| \begin{enumerate} | ||||
| 	\item if $x \neq 0$ then $(x^{-1})^{-1} = x$ | ||||
| 	\item $0 \times x = x$ | ||||
| 	\item $0 \times x = 0$ | ||||
| 	\item $(-x)(-y) = xy$ | ||||
| 	\item if $0 < x < y$, then $x^{-1} > y^{-1}$ | ||||
| \end{enumerate} | ||||
| @ -93,7 +112,7 @@ In an ordered field, the \textit{magnitude} of a number x is defined as follows: | ||||
|  | ||||
| \definition{} | ||||
| We say an element $\delta$ of an ordered field is \textit{infinitesimal} if $|nd| < 1$ for all $n \in \mathbb{Z^+}$. \par | ||||
| \note{Note that $\mathbb{Z}^+$ is a subset of any nonarchimedian extension.} \par | ||||
| \note{Note that $\mathbb{Z}^+$ is a subset of any nonarchimedian extension of $\mathbb{R}$.} \par | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| @ -107,7 +126,7 @@ We say $x$ is \textit{negative} if $x < 0$. \par | ||||
|  | ||||
| \problem{} | ||||
| Show that a positive $\delta$ is infinitesimal if and only if $\delta < x$ for all $x \in \mathbb{R}^+$. \par | ||||
| Then, show that a negative $\delta$ is infinitesimal if and only if it is bigger than every $x \in \mathbb{R}^-$. | ||||
| Then, show that a negative $\delta$ is infinitesimal if and only if $\delta > x$ for every $x \in \mathbb{R}^-$. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| @ -122,31 +141,27 @@ Prove the following statements: \par | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Let $\delta$ be a positive infinitesimal. Which is greater? | ||||
| \begin{itemize} | ||||
| 	\item $\delta$ or $\delta^2$ | ||||
| 	\item $(1 - \delta)$ or $(1 + \delta^2)^{-1!}$ | ||||
| 	\item $(1 - \delta)$ or $(1 + \delta^2)^{-1}$ | ||||
| 	\item $\frac{1 + \delta}{1 + \delta^2}$ or $\frac{2 + \delta^2}{2 + \delta^3}$ \par | ||||
| 	\note[Note]{we define $\frac{1}{x}$ as $x^{-1}$, and thus $\frac{a}{b} = a \times b^{-1}$} | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| \definition{}<stpart> | ||||
| We say two elements of an ordered field are \textit{infinitely close} if $x - y$ is infinitesimal. \par | ||||
| We say that $x_0 \in \mathbb{R}$ is the \textit{standard part} of $x$ if it is infinitely close to $x$. \par | ||||
|  | ||||
| \problem{} | ||||
| We will denote the standard part of $x$ as $\text{st}(x)$. \par | ||||
| Show that $\text{st}(x)$ is well-defined for limited $x$. \par | ||||
| (In other words, show that $x_0$ exists and is unique for limited $x$). \par | ||||
| \hint{To prove existence, consider $\text{sup}(\{a \in \mathbb{R} ~|~ a < x\}$)} | ||||
|  | ||||
| \vfill | ||||
| You may assume that $\text{st}(x)$ exists and is unique for limited $x$. \par | ||||
|  | ||||
| %\problem{} | ||||
| %Let $H$ be positive unlimited. Determine which of the following are limited. \par | ||||
|  | ||||
| @ -17,12 +17,12 @@ | ||||
| \section{Dual Numbers} | ||||
|  | ||||
| \definition{} | ||||
| In the problems below, $\varepsilon$ an infinitesimal so that $\varepsilon^2 = 0$. \par | ||||
| Note that $\varepsilon \neq 0$. | ||||
| In the problems below, let $\varepsilon$ a positive infinitesimal so that $\varepsilon^2 = 0$. \par | ||||
| \note{Note that $\varepsilon \neq 0$.} | ||||
|  | ||||
| \definition{} | ||||
| The set of \textit{dual numbers} is a nonarchimedian extension of $\mathbb{R}$ \par | ||||
| that consists of elements that look like $a + b\varepsilon$, where $a, b \in \mathbb{R}$. | ||||
| that consists of elements of the form $a + b\varepsilon$, where $a, b \in \mathbb{R}$. | ||||
|  | ||||
| \problem{} | ||||
| Compute $(a + b\varepsilon) \times (c + d\varepsilon)$. | ||||
| @ -74,8 +74,8 @@ That is, for what numbers $(a + b\varepsilon)$ is there a $(x + y\varepsilon)$ s | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Find an explicit formula for the inverse of a dual number, \par | ||||
| and use it to find the derivative of $f(x) = \frac{1}{x}$. | ||||
| Find an explicit formula for the inverse of a dual number $(a + b\varepsilon)$, assuming one exists. \par | ||||
| Then, use this find the derivative of $f(x) = \frac{1}{x}$. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| @ -60,14 +60,14 @@ The smallest such $c$ is called the \textit{supremum} of $M$, and is denoted $\t | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Similarly, $x \in \mathbb{R}$ is a \textit{lower bound} of $M$ if $x \leq m \forall m \in M$. \par | ||||
| Similarly, $x \in \mathbb{R}$ is a \textit{lower bound} of $M$ if $x \leq m$ for all $m \in M$. \par | ||||
| The largest upper bound of $M$ is called the \textit{infimum} of $M$, denoted $\text{inf}(M)$. | ||||
|  | ||||
| \problem{} | ||||
| Show that $x$ is the supremum of $M$ if and only if... | ||||
| \begin{itemize} | ||||
| 	\item For all $m \in M$, $m \leq x$ | ||||
| 	\item For any $x_0 < x$, there exists an $m \in M$ so that $m > x_0$ | ||||
| 	\item for all $m \in M$, $m \leq x$, and | ||||
| 	\item for any $x_0 < x$, there exists an $m \in M$ so that $m > x_0$ | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
| @ -92,7 +92,8 @@ Find the supremum and infimum of the following sets: | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Let $A$ and $B$ be subsets of $\mathbb{R}$, and let $\text{sup}(A)$ and $\text{sup}(B)$ be known. | ||||
| Let $A$ and $B$ be subsets of $\mathbb{R}$, and let $\text{sup}(A)$ and $\text{sup}(B)$ be known. \par | ||||
| Compute the following in terms of $\text{sup}(A)$ and $\text{sup}(B)$. | ||||
| \begin{itemize} | ||||
| 	\item $\text{sup}(A \cup B)$ | ||||
| 	\item $\text{sup}(A + B)$, where $A + B = {a + b \forall (a, b) \in A \times B}$, | ||||
| @ -100,6 +101,12 @@ Let $A$ and $B$ be subsets of $\mathbb{R}$, and let $\text{sup}(A)$ and $\text{s | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Prove the assumptions in \ref{stpart}: \par | ||||
| Show that $\text{st}(x)$ is exists and is unique for limited $x$. | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| @ -119,9 +126,8 @@ Use the definitions in this handout to prove \ref{completeness}. \par | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Let $[a_1, b_1] \subseteq [a_2, b_3] \subseteq [a_3, b_3] \subseteq ...$ be an infinite sequence of | ||||
| closed line intervals. Show that there exists a $c \in \mathbb{R}$ that lies in all of them. \par | ||||
| Is this true for open intervals? | ||||
| Let $[a_1, b_1] \supseteq [a_2, b_3] \supseteq [a_3, b_3] \supseteq ...$ be an infinite sequence of closed line intervals. | ||||
| \par Show that there exists a $c \in \mathbb{R}$ that lies in all of them. Is this true of open intervals? | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
		Reference in New Issue
	
	Block a user