Finished LA 101 handout
This commit is contained in:
		@ -115,7 +115,7 @@ AB =
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
\begin{center}
 | 
			
		||||
\begin{tikzpicture}[>=stealth,thick,baseline]
 | 
			
		||||
\begin{tikzpicture}
 | 
			
		||||
 | 
			
		||||
	\begin{scope}[layer = nodes]
 | 
			
		||||
		\matrix[
 | 
			
		||||
@ -148,16 +148,16 @@ $$
 | 
			
		||||
		};
 | 
			
		||||
	\end{scope}
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=3mm]A-1-1) rectangle ([xshift=2mm,yshift=-3mm]A-2-1) {};
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=2mm]A-1-1) rectangle ([xshift=2mm,yshift=-2mm]A-1-2) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-1-2) {};
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-1) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners] ([xshift=-2mm,yshift=3mm]A-1-2) rectangle ([xshift=2mm,yshift=-3mm]A-2-2) {};
 | 
			
		||||
	\draw[rounded corners] ([xshift=-2mm,yshift=2mm]A-2-1) rectangle ([xshift=2mm,yshift=-2mm]A-2-2) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-2-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
 | 
			
		||||
	\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-1-2) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
 | 
			
		||||
 | 
			
		||||
	\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
 | 
			
		||||
\end{tikzpicture}
 | 
			
		||||
@ -183,8 +183,7 @@ $$
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Consider the following matrix product. \\
 | 
			
		||||
Compute it or explain why you can't.
 | 
			
		||||
Compute the following matrix product or explain why you can't.
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
@ -207,13 +206,76 @@ If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Is matrix multiplication commutative? \\
 | 
			
		||||
\note{Does $AB = BA$ for all $A, B$? \\ You only need one counterexample to show this is false.}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
Say we have a matrix $A$. The matrix $A^T$, pronounced \say{A-transpose}, is created by turning rows of $A$ into columns, and columns into rows:
 | 
			
		||||
 | 
			
		||||
$$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 & 3 \\
 | 
			
		||||
	4 & 5 & 6
 | 
			
		||||
\end{bmatrix} ^ T
 | 
			
		||||
=
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 4 \\
 | 
			
		||||
	2 & 5 \\
 | 
			
		||||
	3 & 6
 | 
			
		||||
\end{bmatrix}
 | 
			
		||||
$$
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Look back to \ref{matvec}. \\
 | 
			
		||||
Convince yourself that vectors are matrices. \\
 | 
			
		||||
Compute the following:
 | 
			
		||||
 | 
			
		||||
\hfill
 | 
			
		||||
$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	a & b \\
 | 
			
		||||
	c & d
 | 
			
		||||
\end{bmatrix} ^ T
 | 
			
		||||
$\hfill
 | 
			
		||||
$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 \\
 | 
			
		||||
	3 \\
 | 
			
		||||
	3 \\
 | 
			
		||||
	7 \\
 | 
			
		||||
\end{bmatrix} ^ T
 | 
			
		||||
$\hfill
 | 
			
		||||
$
 | 
			
		||||
\begin{bmatrix}
 | 
			
		||||
	1 & 2 & 4 & 8 \\
 | 
			
		||||
\end{bmatrix} ^ T
 | 
			
		||||
$
 | 
			
		||||
\hfill~
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
The \say{transpose} operator is often used to write column vectors compactly. \\
 | 
			
		||||
Vertical arrays don't look good in horizontal text.
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Consider the vectors $a = [1, 2, 3]^T$ and $b = [40, 50, 60]^T$ \\
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
	\item Compute the dot product $ab$.
 | 
			
		||||
	\item Can you redefine the dot product using matrix multiplication?
 | 
			
		||||
\end{itemize}
 | 
			
		||||
\note{As you may have noticed, a vector is a special case of a matrix.}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
A \textit{column vector} is an $m \times 1$ matrix. \\
 | 
			
		||||
A \textit{row vector} is a $1 \times m$ matrix. \\
 | 
			
		||||
We usually use column vectors. Why? \\
 | 
			
		||||
\hint{How does vector-matrix multiplication work?}
 | 
			
		||||
 | 
			
		||||
Can you multiply a matrix by a vector, as in $vA$? \\
 | 
			
		||||
How does the dot prouduct relate to matrix multiplication? (transpose)
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
		Reference in New Issue
	
	Block a user